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Self-averaging, distribution of pseudocritical temperatures, and finite size scaling
in critical disordered systems

Shai Wiseman and Eytan Domany
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

~Received 9 February 1998!

We evaluate by Monte Carlo simulations various singular thermodynamic quantitiesX for ensembles of
quenched random Ising and Ashkin-Teller models. The measurements are taken atTc and we study how the
distributionsP(X) ~and, in particular, their relative squared width,RX) over the ensemble depend on the
system sizel . The Ashkin-Teller model was studied in the regime where bond randomness is irrelevant and we
found weak self-averaging;RX; l a/n→0, wherea,0 andn are the exponents~of the pure model fixed point!
governing the transition. For the site-dilute Ising model on a cubic lattice, known to be governed by a random
fixed point, we find thatRX tends to a constant, as predicted by Aharony and Harris. We tested whether this
constant is universal. However, this constant is different for canonical and grand canonical disorder. We
identify the pseudocritical temperature of each samplei , Tc( i ,l ), as the temperature at which the susceptibility
reaches its maximal valuexmax. The distribution of these sample dependentTc( i ,l ) was investigated; we found
that its variance scales as@dTc( l )#2; l 22/n. Our previously proposed finite size scaling ansatz for disordered
systems was tested and found to hold. We did observe deviations from a single function, which imply that
sample dependent scaling functions are needed. These deviations are, however, relatively small and hence to
obtain a fixed statistical error it may be more computationally efficient to measurexmax than the commonly
usedx(Tc

`). @S1063-651X~98!10309-4#

PACS number~s!: 05.50.1q, 75.10.Nr, 75.40.Mg, 75.50.Lk
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I. INTRODUCTION

The critical behavior of randomly disordered systems
been extensively studied@1# experimentally, analytically@2#,
and numerically@3# for quite some time now. The Harri
criterion @4,1,5# states that the critical behavior of the pu
system (p) is unaltered by disorder ifap,0; if ap.0, even
a weakly disordered system will not belong to the same u
versality class as the pure one. In renormalization gro
~RG! terminology, the system crosses over from its pu
fixed point to a random one. Ifap50 the situation is mar-
ginal.

None of the currently used Monte Carlo~MC! methods
can check directly whether a certain model is governed b
pure or disordered fixed point. Numerical studies of dis
dered systems near their critical points use finite samp
each samplei is a particular random realization of th
quenched disorder. A measurement of anydensityof an ex-
tensive thermodynamic propertyX ~e.g.,X can be the energy
E, magnetizationM, specific heatC, or susceptibilityx!
yields a different value for the exact thermal averageXi of
every samplei . In an ensemble of disordered samples
linear sizel the values ofXi are distributed with a probability
distributionPl(X). Most MC studies determine only the en
semble average@X# l . In this study we show that by studyin
Pl(X), MC can yield direct evidence about the nature of t
governing fixed point. This can be done by studying t
question ofself-averaging, namely, the behavior of the widt
of Pl(X) as the system sizel increases. We characteriz
P(X) by its average@X# and relative varianceRX ,

RX5VX /@X#2, VX5@X2#2@X#2. ~1!

Suppose thatX is a singular density of an extensive the
PRE 581063-651X/98/58~3!/2938~14!/$15.00
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modynamic property, such asM , x, or the singular part ofE
or C. The system is said to exhibitself-averaging@6# if

RX~ l !→0 as l→`. ~2!

If RX tends to a constant different from zero, the syst
exhibits alack of self-averaging. In a self-averaging system
single very large sample suffices to represent the ensem
without self-averaging, a measurement performed on a sin
sample, no matter how large, does not give a meanin
result and must be repeated on many samples. In a MC s
of a self-averaging disordered system the number of sam
needed to obtain@X# to a given relative accuracy decreas
with increasingl . On the other hand, in a non-self-averagi
system the number of samples that must be simulated is
dependent ofl and the total amount of work rises ver
strongly with l .

Off criticality, wherel is much larger than the correlatio
length j, as first argued by Brout@7#, we may divide the
samplei into n large subsamples~much larger thanj). Ne-
glecting the coupling between subsystems, the meas
value Xi is equal to the average of this quantity over t
~independent! subsamples. According to the central lim
theorem,Xi is distributed normally around its mean@Xi #
with variance VX}1/n; l 2d. In such a case, whereRX
; l 2d, X is calledstrongly self-averaging@8#.

Close to criticality, wherej; l , the Brout argument doe
not hold, since the subsamples are not independent. Thu
criticality there is no reason to expect thatRX; l 2d. To test
this possibility we investigated@9# a family of random-bond
Ashkin-Teller models withap.0, i.e., relevant randomness
and discovered lack of self-averaging for various quantit
measured atTc

` ~another report on lack of self-averaging ca
be found in @17#!. This finding has far reaching conse
2938 © 1998 The American Physical Society
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quences; in particular, the standard way of measuring s
X at Tc

` and analyzing its size dependence using stand
finite size scaling breaks down, since the sample depend
of X needs to be taken into account. As the system s
increases, one moves also to a different realization of
randomness; lack of self-averaging implies that the o
quantity whose dependence onl provides meaningful infor-
mation is the distributionPl(X). Thus the need for a new
finite size scaling theory, suitable for these circumstanc
arose. We proposed such a theory, postulating, follow
Harris, that one can characterize every samplei of size l by
the sample dependent reduced temperature

ṫ i5
T2Tc~ i ,l !

Tc
~3!

whereTc( i ,l ) is a sample dependent pseudocritical tempe
ture, which fluctuate around its ensemble averageTc( l ) with
width dTc( l ). A sample dependent finite size scaling form

Xi~T,l !5 l rQ̃i~ ṫ i l
yt! ~4!

was introduced; the exponentr characterizes the behavior o
@X# atTc ; e.g., forX5x, r5g/n. Next we assumed that th
pseudocritical temperatures are distributed with a wi
dTc( l ) that scales as

@dTc~ l !#2; l 2d. ~5!

Combining this with our scaling ansatz~4! we predicted that
if the specific heat exponent of thedisordered modela,0
then, at criticality,

RX; l a/n. ~6!

Thus, if a/n50, X is non-self-averaging, but if2d,a/n
,0, X is calledweakly self averaging@8#. Note that accord-
ing to @10# a/n <0 in any disordered system, though claim
to the contrary exist~e.g.,@11# and @12#!.

In the present manuscript we extend our work in seve
directions that were not considered previously and, in p
ticular, test our prediction against a renormalization gro
study of the problem, performed@13# by Aharony and Harris
~AH!. These authors found that when the system is gover
by a random fixed point,P(X) approaches a universal,l
independent shape, andRX→const asl→`, which implies
lack of self-averaging. When randomness is irrelevant, th
prediction forR,

RX; l ~a/n!p ~7!

coincides with Eq.~6!. The new questions we ask are th
following:

~1! We test our prediction~6! to cases withirrelevant
randomness.

~2! We study thethree-dimensionalsite-random Ising
model. Here randomness is relevant,ap'0.11 @18#, and the
random specific heat exponent is known to benegative
@19,20#. Hence the AH predictionR→const is in clear con-
tradiction of ours, Eq.~6!.
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~3! As AH point out, this disagreement between the R
result and our scaling ansatz can be reconciled if we ass
that in disordered systems governed by a random fixed po
Eq. ~5! is substituted by

@dTc~ l !#2; l 22/n. ~8!

The manner in whichdTc( l ) scales for relevant randomnes
is an important issue whose resolution will bear on our u
derstanding of a variety of random systems@12#. A direct
study of howdTc( l ) scales is carried out; we calculated th
pseudocritical temperature~defined as the maximum ofx)
for an ensemble of site-diluted 3D Ising samples, using
histogram reweighting method@21–25#.

~4! By working at different dilutions and different en
sembles of random systems we test the AH prediction
garding theuniversalityof R.

~5! We test the validity of the finite size scaling ansatz E
~4!, in particular, the extent to which the dependence on
realization can be absorbed entirely in the sample-depen
pseudocritical temperature.

This work is organized as follows. In the first part of Se
II we define the random bond Ashkin-Teller model, whic
was simulated and summarize its critical behavior as fou
by the finite size scaling results. In the second part of Sec
we give our results concerning self-averaging at criticali
The results indicate clearly thatRX is weakly self-averaging
and are in good agreement with Eq.~7!. In Sec. III we sum-
marize some relevant properties of the site-dilute Is
model on a cubic lattice and give some details of the sim
lation. Finite size scaling results for some observables
criticality are given as well. In Sec. IV we analyze and d
cuss our results concerning self-averaging atTC

` . These re-
sults seem to indicate the correctness of the AH scena
wherebyRX is non-self-averaging. In Sec. V we study th
distributions of the pseudocritical temperatures of the s
dilute Ising model. The scaling of@dTc( l )#2 does not agree
with Eq. ~5! but seems to agree with Eq.~8!, giving addi-
tional evidence for the validity of the AH scenario. In Sec.
we also analyze the distributions of the maximal susceptib
ties x„Tc( i ,l )…, and investigate the extent to which the sc
ing form ~4! holds. The work is summarized in Sec. VI.
condensed account of this work can be found in@47#.

II. WEAK SELF-AVERAGING IN AN ASHKIN-TELLER
MODEL WITH IRRELEVANT DISORDER

A. Definition of the model

The model we study is the random-bond Ashkin-Tel
model on a square lattice. On every site of the lattice t
Ising spin variables,s i andt i , are placed. Denoting bŷi j &
a pair of nearest neighbor sites, the Hamiltonian is given

H52(̂
i j &

@Ki , j~s is j1t it j !1L i , js it is jt j #. ~9!

Ki , j andL i , j are chosen according to
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TABLE I. Estimates for critical exponent ratios of the Ashkin-Teller models from finite size scaling aTc
`

obtained with linear fits to lnl according to Eqs.~15!–~17!.

a/n b/n g/n b (p)/n g (p)/n Fitting interval

Random bond 20.536~32! 0.1252~4! 1.7502~5! 0.322~1! 1.3566~15! 24< l<256
Anisotropic 20.745~4! 0.1262~2! 1.7488~1! 0.3312~5! 1.339~1! 16< l<256
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~Ki , j ,L i , j !5H ~K1,L1! with probability
1

2

~K2,L2! with probability
1

2
.

~10!

The pure model@26# @(K1,L1)5(K2,L2)[(K,L)# flows
under RG onto a line of fixed points along which expone
vary continuously. In particular,f5(a/n), which is analyti-
cally known@27,28#, varies, along the part of the critical lin
with L>0, and interpolates between the Ising (L50) and
four state Potts (L5K) models (1>f>0), so that random-
ness is relevant. Indeed the critical behavior of the disorde
model@15,14,2,16,17# was found to be different from that o
the pure one and lack of self-averaging was found@9#. Along
the other part of this line (L,0) f5a/n is negative, so tha
randomness is irrelevant; a model with finite disorder w
flow under RG@2,15# onto a pure model withf5a/n,0,
leading to weak self-averaging at criticality.

Part of the critical manifold of the random-bond Ashk
Teller model can be found exactly through duality. In pa
of the coupling space where only two phases exist the s
dual manifold
o
s

-

s

d

l
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~K2,L2!5~K 1̃,L 1̃! ~11!

is critical. Here (K 1̃,L 1̃) are the dual couplings of (K1,L1)
@16#. We chose to study a model with the ratio

K2

K1
5

1

10
, ~12!

so that randomness will be pronounced. In addition, a ra
of

L1

K1
52 f 52

9

10
~13!

was chosen. Sincea/n decreases asf increases anda/n
50 for f 50 ~Ising model!, we have chosenf 5 9

10 so that
a/n will be a pronounced negative number. Equations~11!–
~13! define the couplings of the model simulated, where
temperatureT was absorbed into the couplingsKi j ,L i j .

An anisotropic Ashkin-Tellermodel is used as a referenc
pure model@16#; it has the same Hamiltonian~9! but with
~Ki , j ,L i , j !5H ~K1,L1! for bonds ~ i , j ! in the horizontal direction

~K2,L2! for bonds ~ i , j ! in the vertical direction .
~14!
ges

nd

e

ure
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ts
In our Monte Carlo simulations we used a cluster alg
rithm @29,30# described in@16#. The number of sample
simulated wasn52000 for linear lattice sizes 4< l<64,
n(128)51200 for l 5128, and n(256)5436. For each

FIG. 1. The specific heatC of the random bond and the aniso
tropic Ashkin-Teller models as a function of log10 l. The solid lines
are fits to the form~15!.
-samplei Monte Carlo estimates of various observablesXī

and their errorsdXī were calculated.

B. Critical behavior of the model

Here we give the finite size dependences of avera
~over all samples! of various observables, defined as in@16#,
at the critical pointTc

` defined through Eqs.~11!–~13!.
In Fig. 1 we plot the specific heat of the random bond a

the anisotropic models as a function of log10 l. The solid lines
are fits to the finite size scaling form

C5B01B1l a/n. ~15!

Using lattice sizes of 16< l<256, we find a/n
520.745(4) for the anisotropic model, while using lattic
sizes of 24< l<256 , we finda/n520.536(32) for the ran-
dom bond model~note, B1 is negative!. Thus this strongly
disordered model apparently flows under RG onto a p
model with different exponents than its anisotropic vers
but still one that is along the part of the line of fixed poin
where (a/n)p,0.
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For both models the magnetizationm and susceptibilityx
were fitted to the forms

m5Aml 2b/n x5Axl g/n. ~16!

Similarly the polarizationP ~magnetization of thet spins!
and susceptibility of the polarizationx (p) were fitted to the
forms

P5APl 2b~p!/n x~p!5Ax~p!l g~p!/n. ~17!

The estimates for the exponent ratios obtained are liste
Table I. The values ofb/n andg/n are within errors, for the
random bond model or very close, for the anisotropic mod
to the Ising exponent ratiosb/n5 1

8 andg/n5 7
4 . These ex-

ponent ratios are predicted analytically@27,28# to be of this
magnitude all along the critical line of the pure Ashki
Teller model.

C. Calculation of VX

The variancesX
2 of the Monte Carlo estimatesXī is the

sum of two contributions. The main contribution is due to t
varianceVX of the distribution of the trueXi . VX is the
quantity we wish to study. The second contribution is due
the errors of the estimated observables,dXī . Thus, the unbi-
ased estimator@31# of the variance of theXi is

VX5sX
22@~dXī !

2#. ~18!

dXī depends on the length of the MC runs and on the au
correlation timetX of the MC dynamics. To obtain a valid
estimate ofVX , @(dXī)

2#/VX should be sufficiently small. In
the random bond Ashkin-Teller model studied here this
quirement was not met for the specific heatC, whereby we
could not studyRC . Additional discussion of the practica
implications of Eq.~18! can be found in Sec. III of@9#. Next
we list results concerning the critical behavior ofVX at Tc

` .

D. The relative varianceRX

In Fig. 2 we plotRm , Rx , RP , andRxp
as a function of

log10 l. The solid lines are linear fits to the form

RX5AXl rX ~19!

FIG. 2. The relative variance of the susceptibilityRx , of the
magnetizationRm , of the polarizationRP , and of the polarization
susceptibilityRx(p) of the Ashkin-Teller model atTc

` as a function
of log10l . The solid lines are linear fits according to Eq.~19!.
in

l,

o

o-

-

for 24< l<256. The estimates obtained forrX are rx

520.537(32), rm520.546(38), rx(p)520.493(37), and
rP520.509(41). Clearly all observables,m,x,P,x (p) are
weakly self-averaging. Furthermorerx and rm are in very
good agreement with the value ofa/n520.536(32), while
rxp

andrP are also within errors ofa/n. Thus the results for
the scaling of the relative variance of these four observab
are in good agreement with the predictions of AH and w
~6!.

For the energy one cannot separate the singular
the analytic parts. In addition, the singular part decays
l r, with r5(a21)/n. Using our estimate of a/n
520.536(32) and the hyperscaling relationa/n52/n2d,
we find r521.268(48). Thus the variance of the singul
part of the energy is expected according to Eq.~6! to scale as
l 23.072. Therefore one would expectVE to be dominated by
the fluctuations of the analytic part ofE decaying asl 2d. In
Fig. 3 the variance of the energyVE as a function of log10 l is
plotted. Straightforward linear fits to the formVE5AvEl xE in
the lattice size range 24< l<256 yieldedxE522.005(26) in
good agreement with our expectationxE52d.

To conclude this part of the study, we found weak se
averaging at criticality for a disordered model governed b
pure fixed point with (a/n)p,0. We also found good agree
ment with the scaling prediction~7!.

III. THE SITE-DILUTE ISING MODEL
ON A CUBIC LATTICE

In a site-dilute Ising model~see, e.g.,@3# and references
therein! on every site of al 3 l 3 l cubic lattice either an Ising
magnetic spinSi561 is placed ifKi51 or a vacancy is
placed if Ki50. The Ki are randomly drawn according t
one of the prescriptions given below. The system is gover
by the Hamiltonian

H52J(
^ i , j &

KiSiK jSj , ~20!

where^ i , j & stands for a pair of nearest neighbors. RG cal
lations found a dilution independent random fixed point w
universal critical exponents. For example, a recent calc
tion @20# obtained g51.313, b50.342 n50.666, anda
50.002. Early MC studies found global effective critical e
ponents that were found to depend on dilution. This was la
interpreted as due to crossover effects. For example,

FIG. 3. The variance of the energyVE of the Ashkin-Teller
model atTc

` as a function of log10l . The solid line is a linear fit
according toVE5AvEl xE, yielding xE522.005(26).
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most extensive MC study, Heuer@32# found from finite size
scaling in the lattice size range 20< l<60 values ranging
from (a/n)(p50.95)50.12(6) with 5% vacancies, to
(a/n)(p50.8)520.04(6) and (a/n)(p50.6)520.22(6).
However, he argued by analyzing a suitable scaling func
that all models with different amounts of dilution are exhi
iting a crossover to the fixed point predicted by RG. H
results show that, of the amounts of dilution he studied,
p50.8 model reached the universal behavior at the sma
lattice sizes. Later Janssen, Oerding, and Sengespeick@20#
showed in their RG calculations that the effective expon
values obtained by Heuer can be related to regions in
space of coupling coefficients away from the fixed point.

A. Details of the simulations

Three site-dilute Ising models were examined, includ
two types of disorder. In one model disorder was realized
a canonical manner; namely, the number of magnetic site
each site-diluted sample was fixed at a fractionc50.6 of the
number of sites in the lattice. Thus fluctuations amo
samples occur only in the locations of the magnetic sites
not in their number. In two other models disorder was re
ized in a grand-canonical manner; namely, each sample
created by assigning to each site of the lattice a magn
spin ~vacancy! with probability p (12p). In one model we
usedp50.6 and in the second onep50.8. In this case fluc-
tuations among samples include fluctuations in the num
of magnetic sites. These fluctuations tend to zero asl→`,
but for finite l they are significant. For this reason we fou
it of interest, in this study of fluctuations among samples
compare the two ensembles. We are unaware of any prev
findings attesting to differences in the asymptotic critical b
havior between the two ensembles. Because of the~spatially!
uncorrelated nature of the disorder in the grand canon
ensemble it is favored for its relative simplicity by theore
cal studies~see@20# for references! and by numerical studie
@33–37# aiming to test them. On the other hand, in studyi
by Monte Carloaveragethermodynamic observables, erro
can be reduced by using canonical disorder, as was don
@32#. We note that if one wishes to study by Monte Ca
simulation thefluctuations in the thermodynamic observ
ables due to disorder, the use of grand canonical disord
advantageous.

In the Monte Carlo simulations we used the Wolff@30#
single cluster algorithm@29# for the Ising model because o
its efficiency@38#. Skewed periodic boundary conditions@8#

TABLE II. Number of site-dilute samples simulated for ea
model and lattice sizel . The last column lists the infinite lattice
critical temperature, as estimated by Heuer@32#, at which the simu-
lations were performed. Forc50.6, l 590 the pseudocritical tem
perature was not estimated.

l 510 l 520 l 540 l 560 l 580 l 590 Tc
`

c50.6 8000 26000 2000 800 1000 2.4220~6!

p50.6 72000 47000 8000 950 800 2.4220~6!

l 54 l 58 l 516 l 532 l 564

p50.8 10000 4000 32000 4000 1479 3.4992~5!
n

e
st
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e
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were used in order to speed up the simulations. For e
model and lattice sizen site-dilute samples were simulate
Table II summarizes the number of samplesn used for each
lattice size for the three models. Simulations were perform
at the estimated infinite lattice critical temperaturesTc

` ,
given in Table II, due to Heuer@32#, and takingJ51.

B. Finite size scaling atTc
`

Here we give the finite size dependence of averages~over
all samples! of some observables at the critical poi

@X̄i(Tc
`)#.

1. Magnetization m and susceptibilityxc

Using the abbreviation

M5(
i

KiSi , ~21!

the magnetization densitym is defined as

m5
@^uM u&#

Np
, ~22!

where N5 l 3 and the fraction of magnetic sites was eith
p50.8 orp50.6. The susceptibility atTc

` was defined as@8#

xc5
@^M2&#

NpT
. ~23!

The magnetization densitym and susceptibilityxc were fit-
ted to the finite size scaling forms~16!.

The estimates that were obtained for the critical expone
ratiosb/n andg/n from the fits in Figs. 4 and 5 are listed i
Table III together with the estimates of Heuer@32#. Note that
exponent ratios and critical temperatures quoted from@32#
for p50.8 were actually obtained with canonical disorderc
50.8.

2. ­m/­t and estimation ofa/n

In attempting to estimate the exponent ratioa/n directly
from the finite size scaling of the specific heatC through Eq.

FIG. 4. The magnetizationm at Tc
` as a function of log10l . The

solid lines are fits to the form~16!, yielding estimates forb/n that
are listed in Table III.
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~15!, we encountered two difficulties. First, we found that t
estimates of the specific heat of each sampleC̄i were very
sensitive to the length of the simulations. Shorter simulati
biased the specific heat to lower values, e.g., forp50.6, l
540, the value measured forC using an average simulatio
length of n/(2tE11)'120 was two standard deviation
smaller than the one measured with a four times longer si
lation. The systematic underestimation of the response fu
tions due to run lengths that are too short was studied in@39#.
Second, the accuracy in estimatinga/n from the specific
heat behavior is rather poor. This is due to the fact thata/n
is a small negative number so that the singular behavior oC
is difficult to disentangle from other analytic contribution
@40#.

In order to overcome the difficulty in estimating the e
ponent ratioa/n we followed Heuer@40# and measured the
derivative of the magnetization with respect to the redu
temperaturet5(T2Tc)/Tc . It is equal to the magnetization
energy correlation

G52
]m

]t
52

]2f

]H]t
'

21

NpT2
@Š~ uM u2^uM u&!~H2^H&!‹#,

~24!

wheref is the free energy density. From the scaling behav
of the free energy

f ~ t,h!5b2df ~bytt,byhh! ~25!

FIG. 5. The susceptibilityxc as defined in Eq.~23! at Tc
` as a

function of log10l . The solid lines are fits to the form~16!, yielding
estimates forg/n that are listed in Table III.

TABLE III. Estimates for order parameter critical exponent r
tios from finite size scaling atTc

` . Estimates due to Heuer@32# are
listed for comparison. Note that throughout the paper the er
given for our results are only statistical while Heuer’s error e
mates include the systematic errors that could arise from error
determiningTc

` .

b/n b/n ~Heuer! g/n g/n ~Heuer!

c50.6 0.438~13! 0.45~2! 2.110~21! 2.09~3!

p50.6 0.437~12! 2.104~20!

p50.8 0.505~2! 0.51~2! 1.990~4! 1.98~3!
s

u-
c-

d

r

one finds thatG diverges ast2z, where

z5
yt2~d2yh!

yt
512b. ~26!

Thus we fitG to the finite size scaling form

G5C0l z/n. ~27!

The resulting estimates forz/n are given in Table IV.
Assuming the hyperscaling relationa/n52/n2d and using
Eq. ~26! the scaling relationa/n52(z/n1b/n)2d is ob-
tained. Using this relation, the results form and G are uti-
lized in Table IV to give estimates fora/n that are much
more accurate than those obtained from analysis of the
cific heat results.

IV. LACK OF SELF-AVERAGING AT Tc
`

In order to obtain the varianceVX and the relative vari-
anceRX the same procedure and considerations as descr
in Sec. II C were used.

In Fig. 6 we plot the relative variance of the magnetiz
tion Rm as a function of lattice size on a double-logarithm
scale. Several interesting features are suggested by this
ure. First, note that forp50.6, Rm is decreasing asl in-
creases for the smaller lattice sizes, possibly leveling off
large l . Rm of the p50.8 model first decreases slightly an
then seems to tend to a constant. Since it seems plausible
Rm(p50.6)>Rm(p50.8) for any lattice size, these trend
seem to imply that for the two grand canonical modelsRm
tends to the same constant. Assuming that this consta
bound from above by thep50.6 model and from below by
the p50.8 model we estimate it asRm50.055(2). The im-
plication of this scenario is thatRm of the weakly dilutedp
50.8 model reaches the universalRm value of the dilute
Ising fixed point at smaller system sizes than the highly
luted p50.6 model. The fluctuations inmi in the highly

FIG. 6. The relative variance of the magnetizationRm at Tc
` as a

function of log10l .

rs
-
in

TABLE IV. Estimates for critical exponent ratios from finit
size scaling atTc

` . Estimates due to Heuer@32# are listed for com-
parison. The estimate fora/n is based on the relationa/n52(z/n
1b/n)2d.

(z/n) z/n ~Heuer! (a/n) a/n ~Heuer!

c50.6 0.948~6! 0.94~2! 20.228~28! 20.22~6!

p50.6 0.958~3! 20.210~30!

p50.8 0.962~4! 0.97~2! 20.066~9! 20.04~6!
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TABLE V. Different parameters related to the average pseudocritical inverse temperatureKmax( l ) and its
varianceVKmax

. Second column: estimate of the shift exponentl according to Eq.~30!, whereKc is taken
from Heuer@32#. Third and fourth columns: same as first column but withKc being a free parameter. Fifth
column: estimate ofyt based on the finite size scaling ofm andG. Sixth column: same as fifth according t
@32#. Last column: exponent ofVKmax

.

l (Kc fixed! l Kc yt5z/n1b/n yt ~Heuer! rK/2

c50.6 0.99~19! 0.412 54~13! 1.386~14! 1.39~4! 1.41~4!

p50.6 1.30~10! 0.412 51~5! 1.395~12! 1.421~9!

p50.8 1.446~34! 1.346~2! 0.285 760 9~4! 1.467~5! 1.47~4! 1.44~2!
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dilutedp50.6 model are larger than those of the dilute Isi
fixed point model. This finding is in line with Monte Carl
results@32# and RG calculations@20#, according to which the
critical exponents of the dilute Ising fixed point are closer,
the lattice size range 20< l<60, to the observed effectiv
critical exponents of thep50.8 model than to those of th
p50.6 model.

A second feature is the striking difference between
two types of disorder, with the canonically disorderedc
50.6 model exhibiting a much smaller relative variance th
that of the two grand canonical disorder models. WhileRm
of thec50.6 model is initially increasing with system size
appears to level off to a constant value ofRm( l 590)
50.0227(8). Though it is possible thatRm could increase a
larger lattice sizes it seems unlikely since the system s
are already quite large. An indicator to the similarity of t
two types of modelsp50.6 andc50.6 is the relative square
root mean of the fluctuations in the number of magnetic s
N5( j 51

N K j in the p50.6 systemsA@(N2@N#)2#/@N#2

5A(12p)/Np, which for l 580 is as small as; 1
1000.

If indeed Rm of the c50.6 model tends to a differen
constant than that of the models with grand canonical dis
der, then according to Aharony and Harris’ very general R
arguments@13# the two types of models donot belong to the
same universality class. We are not aware of any additio
evidence to this effect otherwise. For example, our criti
exponent estimates for thec50.6 andp50.6 are compatible
with each other, and our exponents for thep50.8 model are
compatible with those of Heuer@32# for a c50.8 model. The
critical temperatures for both types of models seem also
agree~see Table V and Refs.@32,35#!. This question is cur-
rently under investigation. The results@41# suggest that the

FIG. 7. The relative variance of the susceptibilityRxc
at Tc

` as a
function of log10l .
e
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two types of models do flow to the same fixed point and t
the difference inRm will disappear for very largel .

The relative variance of the susceptibilityRxc
is plotted in

Fig. 7. Rxc
exhibits the same qualitative behavior as that

Rm . Rxc
of the grand canonical disorder models tends

Rxc
50.156(4), while Rxc

of thec50.6 model seems to ten

to Rxc
( l 590)50.061(2). Aharony and Harris@13,42# found

that to leading order ine542d, RM /Rx51/4. We find that
for p50.8 RM /Rx50.35(2) and for c50.6 RM /Rx

50.37(1). Possibly terms of higher order ine would recon-
cile this discrepancy. It cannot be attributed to the definit
of xc . If one defines the susceptibility as in Eq.~28! then at
Tc

` one finds thatRx becomes smaller by a factor of;7
210. In this case the ratioRM /Rx would become even
larger. We did not use this definition for the susceptibility
Tc

` because of its large single sample errorsdx̄ i ~see also
@8#!.

V. SCALING OF PSEUDOCRITICAL TEMPERATURES

A. Calculating Tc„ i ,l … with the histogram
reweighting method

One of the main purposes of this work was to study
distribution of pseudocritical temperaturesTc( i ,l ) of the en-
semble of site-dilute Ising models. The main aim was
study directly the scaling ofdTc( l ) with l and test which one
of Eqs.~5! or ~8! is correct in the case of a system govern
by a disordered fixed point. The inverse pseudocritical te
peratureKc( i ,l )51/Tc( i ,l ) of the i th sample was defined a
the inverse temperature of the maximum of the susceptib
of that sample,Kc( i ,l )[Kmax( i ,l ). Here the definition of the
susceptibility was

x i5
^M2&2^uM u&2

NpT
. ~28!

In order to findKmax( i ,l ) the following iteration proce-
dure was followed for each sample. A first simulation w
performed at the infinite lattice critical temperature~as esti-
mated in@32#! K15Kc

` ~the indexi is omitted from here on!.
In addition to calculating the observablesm,x,G, a histo-
gram of the energy and magnetization was generated. U
the single histogram reweighting technique@21–25# ~for pre-
vious studies of disordered systems utilizing the histogr
reweighting technique see@36,43#!, this histogram can serve
to calculate observables at temperatures close toK1. By cal-
culating x at different temperatures a first estimate for t
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susceptibility maximumxmax
1 and the temperature at which

occursKmax
1 was obtained. A second simulation was th

performed at a temperature somewhat above this estim
K25Kmax

1 2Koff. Previous studies of the histogram reweigh
ing technique have shown that the errors of observables aT,
dX̄(T), are smaller@25,23# when the temperature at whic
the histogram was generatedTsim is slightly higher, Tsim
.T. For this reason we choseKoff to be a small positive
number~see more details below!.

Using the energy and magnetization histogram gener
at K2 a new estimate for the temperature of the susceptib
maximum,Kmax

2 , was obtained. If the difference between t
two estimates was smaller than a predetermined resolutior ,
uKmax

2 2Kmax
1 u,r , the iteration process was stopped. Oth

wise the iteration process continued, wherebyK j5Kmax
j 21

2Koff , until the condition

uKmax
j 2Kmax

j 21u,r ~29!

was met. This iteration process was intended to overco
the problem of systematic errors@23# that occur when the
simulation temperature is too far from the trueKmax. The
condition ~29! is supposed to ensure that the last two e
mates forKmax do not suffer from a systematic error.r was
chosen equal to the approximately expected statistical e
of Kmax

j . If the iteration process did not terminate before
with the third estimateKmax

3 then the Monte Carlo simulation
length atK4 was doubled and the process was continued
was again doubled if it reached the seventh iteration
again doubled if it reached the tenth iteration. Nonconv
gence of the process after twelve iterations was very rare
those samples the iteration procedure was restarted man
with K15Kc

` but with a larger initial Monte Carlo simulation
length. The need to increase the simulation length for so
samples occurred because for different samples there
different autocorrelation times~of the Monte Carlo dynam-
ics! and different average cluster sizes, while the simulat
length was specified by thenumberof Wolff cluster flips.

In order to estimate the statistical error and reduce i
simulation with five times as many Monte Carlo steps~com-
pared to the simulation length of the last iteration! was per-
formed again at the last simulation temperatureK j . The
Monte Carlo sequence was broken into five, using each
ment to create a separate histogram and calculate a sep
estimate ofKmax andxmax. Together with the last estimate
of Kmax andxmax of the iteration procedure, all together s
estimates ofKmax andxmax were averaged to give final est
mates ofKmax,i and xmax,i . The variance of these six est
mates was used to estimate the error for the two quanti
dKmax,i , anddxmax,i .

The parameterKoff was adjusted for the small syste
sizes, through trial runs, so as to minimize the errors inxmax,
while its value for the larger systems was extrapolated fr
the smaller ones. Forc5p50.6 we setKoff'0.27l 21.66, and
for p50.8 Koff'0.12l 21.63. The optimal value ofKoff was
found not to depend strongly on the simulation length. T
resolutionr was adjusted so as to be approximately equa
the ensemble average statistical error ofKmax

j . Note that the
parametersKoff andr were set once for each model and ea
lattice size and were not varied for different samples.
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some of the larger systems, for a subset of the samples
simulation with five times as many Monte Carlo steps w
not performed, so that error estimates ofKmax andxmax were
not obtained. This was done in order to save computer ti
For these samples the average squared error ofKmax and
xmax was approximated as being six times larger than tha
the complementary subset of samples where the error
calculated~from an altogether six times longer Monte Car
sequence!. For thep50.6 l 580 system the estimated ave
age squared error was extrapolated from the smaller syst

B. Scaling of tc„ l …

In the finite size scaling theory of@9# it was assumed tha
the average pseudocritical temperatureKmax( l )
[@Kmax( i ,l )# scaled as

Kmax~ l !2Kc5AKl 2l, ~30!

and that the shift exponent@44# l5yt51/n. First we as-
sumed the correctness of the critical temperature valuesTc

`

quoted in Table II, so that the critical inverse temperature
the infinite sample is assumed to beKc51/Tc

`

50.285 781(40) forp50.8, andKc50.412 88(10) forc
50.6 andp50.6. FittingKmax( l ) to ~30! with Kc fixed we
found for the p50.8 model values ofl51.446(34) and
AK50.040(5) from lattice sizes 16< l<64. For thec50.6
and p50.6 models the results were incompatible with t
fixed value ofKc50.412 88. In fact in these modelsKmax( l )
monotonically decreases withl and for the largest lattices w
have Kmax(80,p50.6)2Kc520.000 26(3) andKmax(60,c
50.6)2Kc520.000 077(35). Thus we also fittedKmax( l )
to Eq. ~30! with Kc being a free parameter. The values ofl
andKc which were found, using lattice sizes 10< l<60 for
c50.6 andp50.6, and 8< l<64 for p50.8, are given in
the third and fourth columns of Table V. Forp50.8 our
estimateKc50.285 7609(4) is within errors of the estima
of Heuer@32# ~with canonical disorder! and of Wanget al.
@35# ~with grand canonical disorder!. For c50.6 and p
50.6 our estimates Kc50.412 54(13) and Kc
50.412 51(5) are within errors of each other but not with
errors of the assumed valueKc50.412 88(10). A more ac-
curate estimate ofKc , which does not require knowledge o
l, is obtained in Sec. V C 1. In the fifth column of Table
estimates ofyt based on estimates ofb/n, z/n and the scal-
ing relation ~26! are given. The values ofyt obtained by
Heuer in the same way are given in the sixth column
Table V and are compatible with our estimates. Our e
mates ofyt andl agree forp50.8 ~whereKc was fixed! and
for p50.6 ~whereKc was a free parameter!. For c50.6 no
agreement was found. One possible reason could be tha
system size used to estimatel was too small and that cor
rections to scaling need to be taken into account. As is w
known, finding the critical temperature and the shift exp
nent simultaneously is a difficult task. In any case, our e
mates foryt are much more accurate than the estimates
l. It seems to us that trying to extract the shift exponent a
the critical temperature by finding the pseudocritical te
perature of many samples and using their averageKmax( l ) in
Eq. ~30! is not an efficient method. This is because a lo
MC simulation is needed to avoid systematic errors in e
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mating Kmax( i ,l ). Thus it is difficult to obtain a sufficien
number of samples for an accurate enough estimate
Kmax( l ). The error inKmax( l ) must be small compared t
Kmax( l )2Kc . This difficulty is not as significant for the es
timate of the varianceVKmax

.

C. Variance of pseudocritical temperaturesVKmax

The variance of the pseudocritical temperatures distri
tion VKmax

was calculated taking into account the erro

@(dKmax,i)
2#. This is done in a manner completely analogo

to the discussion ofVX in Sec. II C.VKmax
is plotted in Fig. 8

on a double logarithmic scale. The solid lines are fits to
form VKmax

5AKl 2rK and the resulting estimates ofrK/2 are
listed in the last column of Table V. As one would expe
VKmax

is smaller forc50.6 than forp50.6, and is the small-

est forp50.8. We see that for all three models the results
rK exclude the possibility~5! that rK5d53. On the other
handrK/2 is within errors ofyt for p5c50.6, and within
errors ofl ~with Kc fixed! for p50.8, as predicted by Aha
rony and Harris~8!. Note that the values obtained forrK for
p50.8 with lattices 8< l<32 andp50.6 with 20< l<60 are
rK52.95(6) andrK53.00(4). This behavior ofVKmax

could
be a manifestation of a crossover from pure~5! to dilute ~8!
critical behavior. On the other hand for the model with t
canonical disorder the crossover is in the opposite direc
since forc50.6 with 10< l<40, rK52.77(7).

The results forVKmax
support the picture implied by AH

RG calculations, namely, that both the width of the pse
ocritical temperaturesAVKmax

( l ) and the distance of its av

erage from the critical inverse couplinguKmax( l )2Kcu scale
as ; l 2yt. This is best visualized in Fig. 9 where the fr
quency of the scaled pseudocritical inverse temperat
@Kmax( i ,l )2KC# l yt is plotted for p50.8 and l 516,32,64
with Kc50.285 781 andyt51.467. It is evident that the
three distributions match well. Their averages a
$@Kmax( i ,l )2KC# l yt%50.047(1),0.0451(28),0.044(5), and
their widths areAVKmax

l yt50.172(15),0.174(28),0.17(4

for l 516,32,64 respectively. Note that the average ratio
the width to the average is'3.8. Thus, as is evident from
Fig. 9, the fluctuations inKc( i ,l ) are significantly larger than

FIG. 8. The variance of the inverse pseudocritical temperatu
VKmax

as a function ofl on a log-log scale. The lines are linea
fits yielding exponentsrK listed in the last column of Table V.
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uKc( l )2Kcu for any system size. The result is that a me
surement ofX at the critical temperatureTc

` is done in some
samples above their pseudocritical temperatureTc( i ,l ) and
in some samples belowTc( i ,l ).

1. Estimating Tc
` through VKmax

Our estimates ofVKmax
allow us to estimateTc

` by another
method~we thank D. Stauffer for bringing this to our atten
tion!. Since asymptoticallyKmax(l)2Kc;l2yt and AVKmax

;l2yt, one expects that

Kmax~ l !5Kc1BvAVKmax
~ l !, ~31!

whereKc andBv need to be determined. Note that by fittin
the data according to Eq.~31! ~this method was used in per
colation studies@45#! it is not necessary to determinen, and
only two fitting parameters are used. Therefore the estim

s

FIG. 9. Frequency distributions of the scaled pseudocritical
verse temperatures@Kmax(i,L)2KC#lyt for p50.8, with Kc

50.285 781 andyt51.467. Thin dotted line forl 516, thick dashed
line for l 532 and thin solid line forl 564. The number of sample
used was 32 000 forl 516 4000 forl 532 and 1479 forl 564.

FIG. 10. The average pseudocritical temperatureKmax as a func-
tion of the square root ofVKmax

together with linear fits made ac
cording to Eq.~31!. Fits are made using the three largest syst
sizes for each model. The fitting parameters are listed in the te
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of Kc obtained in this way are probably more reliable th
those given in Table V. In Fig. 10 we plotKmax as a function
of AVKmax

together with linear fits made according to E

~31!. We find Kc50.285 779(2), Bv50.257(3) forp50.8,
Kc50.412 44(4), Bv50.22(3) for p50.6, and Kc
50.412 65(4), Bv50.230(15) forc50.6.

D. Maximum of the susceptibility xmax

1. Scaling of†xmax‡

Another way to study the finite size scaling of the susc
tibility is to study the ensemble average of the maximu
susceptibility@xmax#, which is expected to scale with lattic
size as in Eq.~16! with a scaling exponentg/n. In Fig. 11
@xmax# is plotted as a function ofl on a double logarithmic
scale. The straight lines are linear fits to the form~16!. For
p50.8 we findg/n51.987(3), which is in agreement with
the estimate obtained using the susceptibilityxc at Tc

` ,
g/n51.990(4). As can beseen in Fig. 11 the values o
@xmax# for p50.6 andc50.6 are indistinguishable~they are
indeed within errors!. This is in contrast with the data atTc

`

of Fig. 5 wherexc of the two models seem to diverge with
similar exponent but with a different amplitude. We ha
also calculatedx at Tc

` and found the same trend, name
that x(p50.6).x(c50.6), so that this feature is not a
artifact of the different definitions, Eqs.~23! and~28!, for x.
For p50.6 andc50.6 we foundg/n52.027(2) andg/n
52.034(2), respectively. These values are significan
lower than the values found using the susceptibilityxc at
Tc

` , g/n52.104(20) andg/n52.110(21). They are also
closer to results of RG calculationsg/n51.97 @20,19#.

2. Lack of self averaging of the relative variance Rxmax

In Fig. 12 we plot the relative variance of the maxim
susceptibilityRxmax

as a function of lattice size on a doubl

logarithmic scale. Forp50.8, l 564 andp50.6, l 580 we
have@(dxmax,i)

2#/Vxmax
'1

2,0.15, respectively~see Sec. II C!.

Thus the estimate ofVxmax
is dominated by the estimate o

the average squared single sample errors@(dxmax,i)
2#. For p

FIG. 11. The ensemble average of the maximum susceptib
@xmax# as a function of log10l . The solid lines are fits to the form
~16!, yielding estimates ofg/n52.034(2) for c50.6, g/n
52.027(2) forp50.6, andg/n51.987(3) forp50.8.
-

l

50.6 l 580 this estimate was actually extrapolated from t
smaller systems estimates~see Sec. V A!. Thus these two
data points should be taken with more than a grain of sal
is most interesting to compare Fig. 12 to Fig. 7 where
relative variance of the susceptibility atTc

` , Rxc
, is plotted.

For p50.8 the behavior ofRxmax
and Rxc

is qualitatively

rather similar.Rxmax
initially decreases asl increases and

tends for larger l to a constant, where
Rxmax

(l564)50.00216(16). However, in contrast with Fig

7, this constant is roughly 72 times smaller than the largl
value ofRxc

. This is quite a striking difference. It means th

in order to obtain the same relative accuracy in@xc# as in
@xmax# approximately 70 times as many samples are need
The source of this difference is apparently simple. The s
ceptibility of each sample is some functionG of the tempera-
ture with a sharply peaked maximum atTc( i ,l ). In fact G is
approximately only a function of the differenceT2Tc( i ,l ),
G$T2Tc( i ,l )%. Thus, the value of the maximum susceptib
ity is nearly sample independent,xmax'G(0). On the other
hand, when one measuresx at Tc

` , in different samples one
is samplingG at different values of its argument. This resu
in large fluctuations inx at Tc

` .
Our findings suggest that the standard procedure of

vesting much computation time in finding thel→` limit of
the critical temperature,Tc

` , and then averaging quantities
this temperature over many samples, is not optimal. A be
procedure may be to locate through the single or multi
histogram method the pseudocritical temperature of e
sample, and measure quantities at that temperature. In
way sample to sample fluctuations are reduced substant
and better accuracy is achieved.

For p50.6 Rxmax
monotonically decreases with lattic

size, possibly leveling off to a constant for largel . In con-
trast with Rxc

, this constant is different from that of thep

50.8 model. Lastly, forc50.6, in contrast withRxc
, we find

that Rxmax
is within errors ofRxmax

of the p50.6 model. In

addition,Rxmax
initially decreases asl increases, opposite to

the behavior ofRxc
. More explanations to the differences

the behavior ofRxmax
andRxc

are given at the end of the nex
subsection.

ty
FIG. 12. The relative variance of the maximum susceptibil

Rxmax
as a function of log10l .
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E. Dependence ofm„Tc
`
… on Tc„ i ,l …

After examining the behavior of the distribution ofX( i ,l )
at Tc

` and the distribution ofTc( i ,l ) it is imperative to ex-
amine the correlation between the two distributions. A go
starting point is the finite size scaling ansatz~4!, according to
which Xi(Tc

`) mainly depends on$Tc
`2Tc( i ,l )%/Tc

` . Figure
13 is a scatter plot where for each samplei the horizontal
axis represents the scaled absolute inverse temperatureuKc
2Kc( i ,l )u l yt and the vertical axis is the scaled magnetizat
mil

b/n. This representation is equivalent to the usual d
collapse representation, which is used to demonstrate fi
size scaling. The difference is that here the reference crit
temperature isKc( i ,l ) instead ofKc , and the measuremen
temperature is alwaysKc instead of different values ofK.
Points withKc.Kc( i ,l ) constitute the higherm ~lower tem-
perature! branch, whereas points withKc,Kc( i ,l ) constitute
the lowerm ~higher temperature! branch. In Fig. 13 we plot
data forp50.8 andl 516,64. For the sake of clarity, onl
100 points are shown for each system size and each bra
and several points withuKc2Kc( i ,l )u l yt,0.001 were omit-
ted.

Figure 13 indicates that to a good approximation
scaled magnetization of the sample atTc

` is a function of
only the scaled reduced temperature of the sample. Thus
may attempt to substitute~4! by a sample independent form
for Q̃i(Z) so that

Xi~T,l !' l rQ̃~ ṫ i l
yt!. ~32!

Note that this is only a goodapproximation; if Eq. ~32! were
exact, it would mean thatRxmax

50. Thus in order to describe

the magnetization data atKc we write ~the change from tem
perature to inverse temperature is only for convenience!

FIG. 13. Scatter plot, where for each samplei the horizontal
axis represents the scaled absolute inverse temperatureZ5uKc

2Kc( i ,l )u l yt and the vertical axis is the scaled magnetizationQ̃6

5mlb/n. Points withKc.Kc( i ,l ) constitute the higherm ~lower
temperature! branch, whereas points withKc,Kc( i ,l ) constitute
the lowerm ~higher temperature! branch. For the sake of clarity
only 100 points are shown for each system size and each bra
and several points withuKc2Kc( i ,l )u l yt,0.001 were omitted.
d
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mi~K,l !5 l 2b/nQ̃6„u$K2Kc~ i ,l !%u l yt
…. ~33!

Here Q̃1(Z) is the scaling function forK,Kc( i ,l ) and
Q̃2(Z) for K.Kc( i ,l ). For largel , and thus largeZ, the
infinite sample critical behavior,mi;$K2Kc( i ,l )%

b, must
be asymptotically reproduced@46# for K.Kc( i ,l ). Thus, for
large Z, Q̃2(Z);Zb. For K,Kc( i ,l ) the shape ofQ̃1(Z)
must reproduce, for largeZ, the 1/AN decay of the magne
tization to zero asl→`. Thus, for large Z, Q̃1(Z)
;Zb2d/2yt. ForK5Kc( i ,l ), i.e.,Z50, the finite size scaling
behavior @mi #; l 2b/n must be asymptotically reproduced
implying Q̃6(Z)→const asZ→0. ~An example of this type
of finite size scaling is the scaling we found for@xmax#.! A
simple possible form forQ̃6(Z) fulfilling these requirements
is

Q̃6~Z!5A6Zr6~11B6Z2p6!r6 /p6, ~34!

wherer25b and r15b2d/2yt and A6 ,B6 ,p6 are free
parameters, so that the data of Fig. 13 should be describe
Eqs. ~33! and ~34! with K5Kc . Thus, for each lattice size
l 516,32,64 and both branches,Kc,Kc( i ,l ) and Kc
.Kc( i ,l ), the scaled$Kmax(i,l),mi(Kc)% pairs~a partial set of
which is plotted in Fig. 13! were fitted to the form~34!.
The values of r25b50.342 95 and r15b2d/2yt
520.675 65 that were used rely on the finite size scal
results atTc

` ~Tables III and V!. The six fitting functions that
were obtained are plotted in Fig. 14 and their fitting para
eters are given in Table VI. The agreement between the th
curves for both branches, as seen in Fig. 14, is surprisin
good. The goodness of the fits is also extremely high. T
suggests that Eq.~32!, equations similar to Eq.~34!, and the
possibly invariant~as suggested by Fig. 9! distributions of
Kc( i ,l ) provide an excellent description of the scaling b
havior of disordered systems.

ch,

FIG. 14. The functionsQ̃6(Z), as defined in~34!, obtained
from best fits to the scaled magnetization versus temperature sc

plots for l 516,32,64. Upper curves according toQ̃2 @Kc

.Kc( i ,l )# and lower curves according toQ̃1 @Kc,Kc( i ,l )#. The
fitting parameters are given in Table VI.
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TABLE VI. Parameters of the fitting functionsQ̃6(Z), defined in Eq.~34!, obtained by fitting the data
sets of scaled$Kmax( i ,l ),mi(Kc)% pairs for each lattice sizel 516,32,64 separately~with p50.8). The
number of samples used was 32 000, 4000, and 1477 forl 516, 32, and 64, respectively. The six fittin
functions are plotted in Fig. 14. The crossover lengths, which control the crossover to the largeZ behavior,
are defined asZ6

cross5B
6

1/p6 .

A2 B2 p2 Z2
cross A1 B1 p1 Z1

cross

l 516 2.387~4! 0.0518~13! 1.45~1! 0.130 0.4695~12! 0.1765~18! 1.299~5! 0.263
l 532 2.380~9! 0.048~3! 1.49~3! 0.130 0.4623~22! 0.1687~34! 1.316~9! 0.259
l 564 2.291~23! 0.07~1! 1.33~6! 0.142 0.4524~75! 0.152~11! 1.368~35! 0.252
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In Fig. 15 we show the same data as in Fig. 13 but
p50.6 andc50.6 with system sizel 540.

The purpose of this analysis is to demonstrate that
magnetization of the two models is governed by the sa
temperature dependence, and that the main difference
the distributions ofKc( i ,l ). For this reason the data we
scaled with the same exponents, taken as the average o
exponents of the two models,b/n50.4375 and yt
51.3905. In fact our estimates foryt and b/n for the two
models are within errors. For the sake of clarity, only 1
points for each model and each branch are shown. As
seen with thep50.8 data, it is evident that to a good a
proximation in both models the magnetization atKc is a
function of only the reduced inverse temperatureKc
2Kc( i ,l ). The main difference between the two models
also clear; forp50.6 there are more points with largeuKc
2Kc( i ,l )u, while for c50.6 there are more points with sma
uKc2Kc( i ,l )u. Thus larger fluctuations forp50.6 in Kc( i ,l )
~see also Fig. 7! together with the large dependence
mi(Kc) on Kc2Kc( i ,l ) give rise to the result thatRm(p
50.6).Rm(c50.6).

In Fig. 16 we plot the fitting functionsQ̃6(Z), obtained
by best fits to the scaled magnetization versus tempera
scatter plots forp50.6 andc50.6 with l 540 ~the full data
sets corresponding to Fig. 15!.

For the high temperature branch [Kc,Kc( i ,l ), lower
curve# good agreement between the fitting functionsQ̃1(Z)

FIG. 15. Same data as in Fig. 13 but forp50.6 andc50.6 with
system sizel 540. The data were scaled with exponents taken
the average of the exponents of the two models,b/n50.4375 and
yt51.3905. For the sake of clarity, only 100 points for each mo
and each branch are shown.
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of the two models is found. For the low temperature bran
[Kc.Kc( i ,l ), higher curve# good agreement is found be

tween the functionsQ̃6(Z) for smallerZ, while for largeZ

Q̃2(Z) is larger for the grand canonical disorder (p50.6).

The fitting functionsQ̃6(Z) for the data forl 560 did not
agree with those ofl 540. Possibly this is so because t
exponents used are not the asymptotic ones@32,20#.

It is also of interest to contrast the dependence ofxmax on
Kmax,i with the dependence ofxc(Kc) on Kmax,i . This is a
key to understanding the reasons for the differences betw
the characteristics ofRxc

~Fig. 7! and the characteristics o

Rxmax
~Fig. 12!. In Fig. 17 we show a scatter plot of (Kmax

2Kc ,xmax/@xmax#) and „Kmax2Kc,xc(Kc)/@xc(Kc)#… for p50.6
and system sizel 560 from 950 samples. It is evident th
while xc(Kc) shows a strong dependence onKmax2Kc , xmax
shows little dependence onKmax2Kc . This qualitative differ-
ence persists for all models and all system sizes. This
plains why, for any given model, fluctuations inKmax,i give
rise to fluctuations inxc(Kc), which are much larger than th
fluctuations inxmax. The result is thatRxmax

!Rxc
, as we have

noted previously.
Figure 17 is also the key to understanding whyRxc

(p

50.6).Rxc
(c50.6) whileRxmax

(p50.6)'Rxmax
(c50.6). In

the first case, since fluctuations inKmax are larger for
p50.6 than forc50.6 ~see Fig. 8! the strong dependence o
xc(Kc) on Kmax2Kc gives rise to Rxc

(p50.6).Rxc
(c

s

el

FIG. 16. The functionsQ̃6(Z), as defined in Eq.~34!, obtained
from best fits to the scaled magnetization versus temperature sc
plots forc50.6 ~dotted line! andp50.6, with l 540. Upper curves

according toQ̃2 @Kc.Kc( i ,l )# and lower curves according toQ̃1

@Kc,Kc( i ,l )#. Fits made usingb/n50.4375 andyt51.3905.



io

H
ur
.
e,
lf

de
an

-

e
p
-

e

ha
n
iz

-

t
t

rac-
re-

a

int,

the

e

es as

ed

,
on

e

e
.’’

-

ring
od
t-
of
i-

-

of
d.
ce
-
r

2950 PRE 58SHAI WISEMAN AND EYTAN DOMANY
50.6). In the second case, despite the fact that fluctuat
in Kmax are larger forp50.6 than forc50.6, the weak de-
pendence ofxmax on Kmax2Kc results in Rxmax

(p50.6)

'Rxmax
(c50.6).

VI. SUMMARY AND DISCUSSION

By and large it seems that our MC results confirm the A
scenario. In an Ashkin-Teller model, governed by a p
fixed point, we found thatRX; l a/n in agreement with Eqs
~6! and ~7!. In site-dilute Ising models on a cubic lattic
governed by a random fixed point, we found a lack of se
averaging for both canonical and grand canonical disor
One of the aims of our work was to resolve whether at r
dom fixed points our assumption~5!, which led to the pre-
diction ~6! for the critical widthRX , is correct. The alterna
tive RX→const result of AH implies that Eq.~8! should
replace Eq.~5!. Our results indicate that the AH result is th
correct one. Note though that the absolute value of the ex
nent ratioa/n of the dilute Ising fixed point, either as calcu
lated by RG,a/n50.003, or as indicated by thep50.8 re-
sultsa/n520.055(8), is very small. Thus one could argu
that our results forRm andRxc

do not disprove Eq.~6!. The

scaling ofVKmax
is, however, in agreement with Eq.~8! and

not with Eq. ~5!. This therefore rules out Eq.~6! since it is
based on Eq.~5!.

We find it appropriate to repeat here the results of A
rony and Harris@13#, which we have now validated, with a
emphasis on the implication to experiments. In finite s
scaling form the relative variance can be written as

RX~j,l !5 l vQ~ l /j!. ~35!

For a fixedj5j0 and l @j, and thus largeZ, strong self-
averaging,RX(j0 ,l ); l 2d, must be asymptotically repro
duced. ThusQ(Z);Z2d2v for large Z. At criticality the
correlation length diverges and

lim
j→`

RX~j,l !5 l vQ~0!. ~36!

FIG. 17. A scatter plot of„Kmax2Kc ,xc(Kc)/@xc(Kc)#… and
(Kmax2Kc ,xmax/@xmax#), contrasting the dependence ofxc(Kc) and
xmax on Kmax(i,l). Data forp50.6 and system sizel 560 from 950
samples.
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When the system is governed by a disordered fixed poinv
50. When the system is governed by a pure fixed poinv
5(a/n)p . Thus the two possible behaviors for 1!j! l are

RX~j,l !;H ~ l /j!2d for a random fixed point

~ l /j!2dja/n for a pure fixed point .
~37!

In an experiment, since generating many samples is imp
tical, one studies a single large sample with a particular
alization of the quenched disorder of sizel . For anyj the
value of X measured in the sample is a sampling from
probability distribution with relative varianceRX(j,l ). Thus
RX(j,l ) controls the deviation ofX from the many samples
average. If the system is governed by a random fixed po
as the correlation length is increased,RX increases as
;( l /j)2d. X behaves like the average of (l /j)d independent
measurements on regions of sizejd. The variance of these
measurements does not decrease asj increases; it is con-
stant. On the other hand if the disorder is irrelevant and
system is governed by a pure fixed point witha,0, as the
correlation length is increased,RX increases more mildly as
;( l /j)2dja/n. In this case too,X behaves like the averag
of ( l /j)d measurements on regions of sizejd. However, asj
increases, the variance of these measurements decreas
;ja/n.

We have verified that for a disordered system govern
by a random fixed point@dTc( l )#2 does not scale as; l 2d,
but rather as@dTc( l )#2; l 22/n. This is an important result
similar to the situation in the purely geometric percolati
problem @45#. Recently Pa´zmándi, Scalettar, and Zima´nyi
@12# claimed that the boundn>2/d, which was supposed to
hold for disordered systems@10#, is not valid. As they show,
if in systems violating this bound one would hav
@dTc( l )#2; l 2d @our Eq.~5!#, then simulations atTc

` would
not be able to capture the true critical exponents@12#. In fact
in @12# Eq. ~5! is termed ‘‘the most likely scenario’’ and th
conclusion drawn is that ‘‘self-averaging breaks down
However, studies of percolation@45#, our results, and those
of AH @13# imply the contrary.@dTc( l )#2; l 22/n @our Eq.
~8!#, and therefore simulations atTc

` are able to capture the
true critical exponents even ifn,2/d. This also becomes
evident by examining the finite size scaling theory of@9# for
@Xi(Tc

`)#, assuming that Eq.~5! holds versus the conse
quences of Eq.~8!.

We have shown that fluctuations inXi at Tc
` are predomi-

nantly due to fluctuations indTi5Tc
`2Tc( i ,l ), and that

these fluctuations can be dramatically reduced by measu
Xi at Tc( i ,l ). This suggests that using the histogram meth
to obtainXi„Tc( i ,l )… for each sample might be a better stra
egy for Monte Carlo studies than the current strategy
studyingXi(Tc

`). It was also shown that to a good approx
mation, fluctuations ofXi close to criticality can be ac
counted for by the finite size scaling form Eq.~32!. We be-
lieve that a more extensive study of the finite size scaling
sample to sample fluctuations is both feasible and desire

One of the surprising results of this work is the differen
found between thep50.6 model with grand canonical dis
order and thec50.6 model with canonical disorder. Ou
results indicate that forp50.6 andc50.6 VKmax

scales as
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l 22yt and that VKmax
(p50.6)/VKmax

(c50.6)'3.26. This is

apparently the reason why for these two types of disorderRX
tends for largel to different constants. On the other hand w
did not find any difference in the scaling exponents of
two types of disorder.

Note added. According to an RG calculation@41#, com-
pleted after our initial submission, the two models flow u
der RG to the same grand canonical disorder fixed point
addition, RX of the canonical disorder tends to the gra
canonical value very slowly, i.e., asl a/n. This could explain
our numerical findings forRX with l<90.
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