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We evaluate by Monte Carlo simulations various singular thermodynamic quarXitfies ensembles of
guenched random Ising and Ashkin-Teller models. The measurements are tdkeanat we study how the
distributions P(X) (and, in particular, their relative squared widfRy) over the ensemble depend on the
system sizé. The Ashkin-Teller model was studied in the regime where bond randomness is irrelevant and we
found weak self-averagindiy~1%*—0, wherea<0 andv are the exponent®f the pure model fixed poipt
governing the transition. For the site-dilute Ising model on a cubic lattice, known to be governed by a random
fixed point, we find thaRy tends to a constant, as predicted by Aharony and Harris. We tested whether this
constant is universal. However, this constant is different for canonical and grand canonical disorder. We
identify the pseudocritical temperature of each sampte,(i,l), as the temperature at which the susceptibility
reaches its maximal valyg"® The distribution of these sample dependggi,|) was investigated; we found
that its variance scales &8T.(1)]>~1~2". Our previously proposed finite size scaling ansatz for disordered
systems was tested and found to hold. We did observe deviations from a single function, which imply that
sample dependent scaling functions are needed. These deviations are, however, relatively small and hence to
obtain a fixed statistical error it may be more computationally efficient to meagtifethan the commonly
usedy(T;). [S1063-651X98)10309-4

PACS numbgs): 05.50+q, 75.10.Nr, 75.40.Mg, 75.50.Lk

[. INTRODUCTION modynamic property, such &8, y, or the singular part of
or C. The system is said to exhitself-averagind 6] if
The critical behavior of randomly disordered systems has
been extensively studigd] experimentally, analytically2], Rx(1)—0 as|—. 2
and numerically[3] for quite some time now. The Harris
criterion [4,1,5] states that the critical behavior of the pure
system 0) is unaltered by disorder #,<0; if «,>0, even

If Ry tends to a constant different from zero, the system
exhibits alack of self-averagingin a self-averaging system a

a weakly disordered system will not belong to the same uni-Single very large sample suffices to represent the ensemble;

versality class as the pure one. In renormalization grouﬂ‘”thom self-averaging, a measurement performed on a single

(RG) terminology, the system crosses over from its pureSaMPle, no matter how large, does not give a meaningful

fixed point to a random one. l,=0 the situation is mar- result and must_be rgpeated on many samples. In a MC study
ginal P of a self-averaging disordered system the number of samples

None of the currently used Monte CardIC) methods needed to obtaifhX] to a given relative accuracy decreases

can check directly whether a certain model is governed by ¥/ith increasing. On the other hand, in a non-self-averaging

pure or disordered fixed point. Numerical studies of disor-SyStem the number of samples that must be simulated is in-

dered systems near their critical points use finite samplegependem_ off and the total amount of work rises very
each samplei is a particular random realization of the StOngly withl. , _
quenched disorder. A measurement of aeysityof an ex- Off crmcaht'y, wherel is much larger than the (;qrrelatlon
tensive thermodynamic proper§(e.g.,X can be the energy |€ngth &, as first argued by Brout7], we may divide the

E, magnetizationM, specific heatC, or susceptibilityy) ~ Sa@mPplei into n large subsamplegnuch larger tharg). Ne-
yields a different value for the exact thermal averageof ~ 9l€cting the coupling between subsystems, the measured
every samplei. In an ensemble of disordered samples ofValue X; is equal to the average of this quantity over the
linear sizel the values ofX; are distributed with a probability (Independent subsamples. According to the central limit
distribution P|(X). Most MC studies determine only the en- th_eorem,_Xi IS dlstnbuted_dnormally around its mediX;]
semble averageX]; . In this study we show that by studying W|trjdvar|gnce Vxlin~1"7% In such a case, wher&y
P,(X), MC can yield direct evidence about the nature of the™! " X s calledstrongly self-averagings].

governing fixed point. This can be done by studying the ClOS€ to criticality, wherg~I, the Brout argument does
question ofself-averagingnamely, the behavior of the width not hold, since the subsamples are not independent. Thus at

of P,(X) as the system sizé increases. We characterize C'iticality there is no reason to expect tti~1"". To test
P(X) by its averagé X] and relative variancey , this possibility we investigatef®] a family of random-bond
Ashkin-Teller models withw,>0, i.e., relevant randomness,

Ry=Vy/[X]?, Vx=[X2]-[X]% (1)  and discovered lack of self-averaging for various quantities
measured dat; (another report on lack of self-averaging can
Suppose thaX is a singular density of an extensive ther- be found in[17]). This finding has far reaching conse-
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qguences; in particular, the standard way of measuring some (3) As AH point out, this disagreement between the RG
X at T¢ and analyzing its size dependence using standartesult and our scaling ansatz can be reconciled if we assume
finite size scaling breaks down, since the sample dependendieat in disordered systems governed by a random fixed point,
of X needs to be taken into account. As the system siz&d. (5) is substituted by

increases, one moves also to a different realization of the

randomness; lack of self-averaging implies that the only

quantity whose dependence bprovides meaningful infor- [8Te(1)]?~172", (8
mation is the distributiorP(X). Thus the need for a new

finite size scaling theory, suitable for these circumstances,

arose. We proposed such a theory, postulating, followingrhe manner in whick¥T(l) scales for relevant randomness
Harris, that one can characterize every sampésizel by  is an important issue whose resolution will bear on our un-

the sample dependent reduced temperature derstanding of a variety of random systefi®]. A direct
study of howsT,(l) scales is carried out; we calculated the
. T=Tg(i,1) pseudocritical temperatur@efined as the maximum of)
i:T—C (3 for an ensemble of site-diluted 3D Ising samples, using the

histogram reweighting methd®1-25.

whereT(i,l) is a sample dependent pseudocritical tempera- (4%| By \:cvorkigg at different dilutionshanngiffergnt_ en-
ture, which fluctuate around its ensemble averdgé) with sembles of random Systems we test the prediction re-

) L ; garding theuniversalityof R.
width oTc(1). A sample dependent finite size scaling form (5) We test the validity of the finite size scaling ansatz Eq.

(4), in particular, the extent to which the dependence on the
realization can be absorbed entirely in the sample-dependent
pseudocritical temperature.

was introduced; the exponeptcharacterizes the behavior of *  This work is organized as follows. In the first part of Sec.
[X]atTc; e.g., forX=Y, p="7/v. Nextwe assumed that the || we define the random bond Ashkin-Teller model, which
pseudocritical temperatures are distributed with a widthyas simulated and summarize its critical behavior as found

X(T,H=1°Q;(t;1") (4)

oT(l) that scales as by the finite size scaling results. In the second part of Sec. I
N we give our results concerning self-averaging at criticality.
[oTc(D]~17F (5)  The results indicate clearly th& is weakly self-averaging

and are in good agreement with E@). In Sec. Ill we sum-
Combining this with our scaling ansat4) we predicted that marize some relevant properties of the site-dilute Ising
if the specific heat exponent of tltisordered modekk<<O  model on a cubic lattice and give some details of the simu-
then, at criticality, lation. Finite size scaling results for some observables at

criticality are given as well. In Sec. IV we analyze and dis-

Ry~1°7". (6)  cuss our results concerning self-averaging @t These re-

sults seem to indicate the correctness of the AH scenario,
Thus, if a/v=0, X is non-self-averaging, but i-d<a/v  wherebyRy is non-self-averaging. In Sec. V we study the
<0, X is calledweakly self averagin{8]. Note that accord- distributions of the pseudocritical temperatures of the site-
ing to[10] /v <0 in any disordered system, though claims dilute Ising model. The scaling ¢f5T(1)]? does not agree
to the contrary existe.g.,[11] and[12]). with Eqg. (5) but seems to agree with E¢8), giving addi-

In the present manuscript we extend our work in severational evidence for the validity of the AH scenario. In Sec. V
directions that were not considered previously and, in parwe also analyze the distributions of the maximal susceptibili-
ticular, test our prediction against a renormalization grougties y(T(i,l)), and investigate the extent to which the scal-
study of the problem, performdd3] by Aharony and Harris ing form (4) holds. The work is summarized in Sec. VI. A
(AH). These authors found that when the system is governedondensed account of this work can be found4).
by a random fixed pointP(X) approaches a universdl,
independent shape, aft)— const ad — o, which implies
lack of self-averaging. When randomness is irrelevant, their||. WEAK SELF-AVERAGING IN AN ASHKIN-TELLER
prediction forR, MODEL WITH IRRELEVANT DISORDER

Rx~|(a/u)p ) A. Definition of the model

The model we study is the random-bond Ashkin-Teller
coincides with Eq.(6). The new questions we ask are the model on a square lattice. On every site of the lattice two
following: Ising spin variablesg; and r;, are placed. Denoting bij )

(1) We test our prediction(6) to cases withirrelevant  a pair of nearest neighbor sites, the Hamiltonian is given by
randomness

(2) We study thethree-dimensionalsite-random Ising __ o P
model. Here randomness is relevamt~0.11[18], and the H <.EJ> [Kij(aiot nim)+ A joimioym]. ©
random specific heat exponent is known to begative
[19,20. Hence the AH predictiofR— const is in clear con-
tradiction of ours, Eq(6). Kij andA; ; are chosen according to
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TABLE I. Estimates for critical exponent ratios of the Ashkin-Teller models from finite size scalifig at
obtained with linear fits to lhaccording to Eqs(15)—(17).

alv Blv ylv BPy »Py Fitting interval

Random bond —0.53632 0.12524) 1.75025) 0.3221) 1.356615) 24<|<256
Anisotropic —0.7454) 0.12622) 1.74881) 0.33125) 1.3391) 16<1=<256

1 2 A2y (el Al
(K%,AY)  with probability (KA =(K5AT) (11)

(Kij Ai )= ) o _ 1 10 s critical. Here ((lei) are the dual couplings oi(,A %)
(K%,A%) with probability . [16]. We chose to study a model with the ratio
The pure modefl26] [ (K, A =(K2,A%)=(K,A)] flows K? 1
under RG onto a line of fixed points along which exponents F_ 10’ (12)

vary continuously. In particulakp= (a/v), which is analyti-

cally known([27,28, varies, along the part of the critical line g4 that randomness will be pronounced. In addition, a ratio
with A=0, and interpolates between the Ising<0) and ¢

four state Potts A =K) models (2= $=0), so that random-

ness is relevant. Indeed the critical behavior of the disordered Al 9
model[15,14,2,16,1Fwas found to be different from that of = f=—— (13
the pure one and lack of self-averaging was fo[ld Along Kt 10

the other part of this lineX <0) ¢= a/v is negative, so that

randomness is irrelevant; a model with finite disorder willwas chosen. Since/v decreases a$ increases andv/v

flow under RG[2,15] onto a pure model withp= o/ <0, =0 for f=0 (Ising mode), we have chosefi=:; so that

leading to weak self-averaging at criticality. al v will be a pronounced negative number. Equatighl—
Part of the critical manifold of the random-bond Ashkin (13) define the couplings of the model simulated, where the

Teller model can be found exactly through duality. In partstemperaturél was absorbed into the couplings; ,Aj; .

of the coupling space where only two phases exist the self- An anisotropic Ashkin-Tellemodel is used as a reference

dual manifold pure mode[16]; it has the same Hamiltonia®) but with

(K1,A1) forbonds(i,j) inthe horizontal direction

(KijoAij)= (K2,A2) forbonds (i,j) in the vertical direction . (14

In our Monte Carlo simulations we used a cluster algo-samplei Monte Carlo estimates of various observables
rithm [29,30 described in[16]. The number of samples 4.4 their errorsSX. were calculated.
simulated wasn=2000 for linear lattice sizes €4|<64, '
n(128): 1200 for =128, and n(256): 436. For each B. Critical behavior of the model

Here we give the finite size dependences of averages
x random o T (over all samplesof various observables, defined aq 1],
1.4 S anisotropic 7 at the critical pointT; defined through Eq€11)—(13).
i P ’ In Fig. 1 we plot the specific heat of the random bond and

o 1.2 - the anisotropic models as a function of Jgly The solid lines
I | are fits to the finite size scaling form

T &
- 7 C=Bo+B,l". (15)
0.8 ® -
L i Using lattice sizes of 181<256, we find al/v
0.6 _ =—0.745(4) for the anisotropic model, while using lattice
| | - sizes of 241=<256 , we finda/v=—0.536(32) for the ran-
1 10l 100 dom bond modelnote, B, is negative. Thus this strongly

disordered model apparently flows under RG onto a pure
FIG. 1. The specific heaf of the random bond and the aniso- model with different exponents than its anisotropic version
tropic Ashkin-Teller models as a function of lgg. The solid lines  but still one that is along the part of the line of fixed points
are fits to the form(15). where (@/v),<0.
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FIG. 3. The variance of the energyg of the Ashkin-Teller
model atT; as a function of log). The solid line is a linear fit
according toVg=A, gl *e, yielding xg= —2.005(26).

FIG. 2. The relative variance of the susceptibilRy,, of the
magnetizatiorR,,,, of the polarizatiorRp, and of the polarization
susceptibilityR, ) of the Ashkin-Teller model aT; as a function

of log,g. The solid lines are linear fits according to Ed9). for 24<|<256. The estimates obtained fgr, are p
: X

=—0.537(32), pm=—0.546(38), p (= —0.493(37), and
pp=—0.509(41). Clearly all observables,y,P,x? are
weakly self-averaging. Furthermoyg, and p,, are in very
m=A| " y=AI"". (16) good agreement with the value af v=—0.536(32), while
X Pxo andpp are also within errors ofe/ v. Thus the results for

Similarly the polarizationP (magnetization of ther sping  the scaling of the relative variance of these four observables
and susceptibility of the polarizatiog(® were fitted to the ~are in good agreement with the predictions of AH and with

forms (6).
For the energy one cannot separate the singular and

yP=A (p)w(p)/v_ (17) the analytic parts. In addition, the singular part decays as
X I?, with p=(a—1)/v. Using our estimate ofa/v

The estimates for the exponent ratios obtained are listed iff —0.536(32) and the hyperscaling relatiefy=2/v—d,

Table I. The values oB/v andy/v are within errors, for the Wwe find p=—1.268(48). Thus the variance of the singular

random bond model or very close, for the anisotropic modelpart of the energy is expected according to & to scale as

to the Ising exponent ratio8/v==% and y/v="1. These ex- | >°"2 Therefore one would expedt to be dominated by

ponent ratios are predicted analyticalB7,28 to be of this  the fluctuations of the analytic part & decaying ag~“. In

magnitude all along the critical line of the pure Ashkin- Fig. 3 the variance of the ener§t as a function of log| is

Teller model. plotted. Straightforward linear fits to the fordf=A, gl € in

the lattice size range 24l <256 yieldedxg= —2.005(26) in

good agreement with our expectatigp= —d.

o To conclude this part of the study, we found weak self-
The variances? of the Monte Carlo estimateX; is the  averaging at criticality for a disordered model governed by a

sum of two contributions. The main contribution is due to thepure fixed point with &/»),<0. We also found good agree-

varianceVy of the distribution of the trueX;. Vy is the  ment with the scaling predictiofv).

guantity we wish to study. The second contribution is due to

For both models the magnetizationand susceptibilityy
were fitted to the forms

P=Apl A"l

C. Calculation of Vx

the errors of the estimated observablé;. Thus, the unbi- IIl. THE SITE-DILUTE ISING MODEL
ased estimatdr31] of the variance of th&; is ON A CUBIC LATTICE
Vy=02—[(8X)?]. (18) In a site-dilute Ising mode{see, e.g.[3] and references

therein on every site of 4 X1 X | cubic lattice either an Ising

5X; depends on the length of the MC runs and on the autoMagnetic spinS;==1 is placed ifK;=1 or a vacancy is

correlation timery of the MC dynamics. To obtain a valid place?tg‘KFO. Tf:e K are ratr:ollomlxrgrawntaccprding to g
estimate oVy, [(8X;)%]/V should be sufficiently small. In one ofhe prescriptions given below. The systemis governe

the random bond Ashkin-Teller model studied here this re—by the Hamiltonian

guirement was not met for the specific h€atwhereby we
could not studyR.. Additional discussion of the practical H:—Jz KiSK;S;, (20)
implications of Eq.18) can be found in Sec. Il df9]. Next (i)

we list results concerning the critical behavior\6f at T; . . ) .
where(i,j) stands for a pair of nearest neighbors. RG calcu-

lations found a dilution independent random fixed point with
universal critical exponents. For example, a recent calcula-
In Fig. 2 we plotR,, R, , Rp, and RXp as a function of tion [20] obtained y=1.313, 8=0.342 v=0.666, anda
logy, |. The solid lines are linear fits to the form =0.002. Early MC studies found global effective critical ex-
ponents that were found to depend on dilution. This was later
Ry = AxlPx (190  interpreted as due to crossover effects. For example, in a

D. The relative variance Ry
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TABLE II. Number of site-dilute samples simulated for each 1 — T T T
model and lattice sizé. The last column lists the infinite lattice C —0.8 & ]
critical temperature, as estimated by He[&%], at which the simu- r p=y. .
lations were performed. Far=0.6, | =90 the pseudocritical tem- 0.5 : & p=0.6 x :
perature was not estimated. :

£ i - c=0.6 0 ]

=10 1=20 1=40 I=60 1=80 1=90 Te - g
c=0.6 8000 26000 2000 800 1000 2.4280 0.2 ]
p=0.6 72000 47000 8000 950 800 2.4280 )

=4 1=8 1=16 1=32 |=64

O ‘] 1 L1l 1 Lol

p=0.8 10000 4000 32000 4000 1479 3.492 1 10 100
most extensive MC study, Heuf82] found from finite size FIG. 4. The magnetizatiom at T as a function of logj. The

scaling in the lattice size range 20<60 values ranging solid_lines'are fits to the forril6), yielding estimates foB/v that
from (a/v)(p=0.95)=0.12(6) with 5% vacancies, to a€ listedinTable li.

(alv)(p=0.8)= —0.04(6) and &/v)(p="0.6)=—0.2%6). , o
However, he argued by analyzing a suitable scaling functiof’€"® used in order to speed up the simulations. For each

that all models with different amounts of dilution are exhib- Model and lattice size site-dilute samples were simulated.
iting a crossover to the fixed point predicted by RG. His|2aPle Il summarizes the number of sampfessed for each

results show that. of the amounts of dilution he studied. thdattice size for the three models. Simulations were performed
p=0.8 model reached the universal behavior at the smallegit the estimated infinite lattice critical temperaturgs,
lattice sizes. Later Janssen, Oerding, and Sengesp2@ik given in Table II, due to Heudi32], and taking)=1.

showed in their RG calculations that the effective exponent

values obtained by Heuer can be related to regions in the B. Finite size scaling atT;
space of coupling coefficients away from the fixed point. Here we give the finite size dependence of averdgesr
all samples of some observables at the critical point
A. Details of the simulations [%(Tw)]
I Cc "

Three site-dilute Ising models were examined, including
two types of disorder. In one model disorder was realized in 1. Magnetization m and susceptibility
a canonical manner; namely, the number of magnetic sites in sjng the abbreviation
each site-diluted sample was fixed at a fractien0.6 of the
number of sites in the lattice. Thus fluctuations among
samples occur only in the locations of the magnetic sites but M= K;S, (21)
not in their number. In two other models disorder was real-
ized in a grand-'caponical manner, namely, ea}ch sample WaRe magnetization density is defined as
created by assigning to each site of the lattice a magnetic
spin (vacancy with probability p (1—p). In one model we [{IM])]
usedp=0.6 and in the second oe=0.8. In this case fluc- m=—xp
tuations among samples include fluctuations in the number P
O T e e g PereN=1" and the raton of magret sies was eithr
it of interest, in this study of fluctuations among samples, top_o'8 orp=0.6. The susceptibility & ; was defined ags]
compare the two ensembles. We are unaware of any previous [(M2)]
findings attesting to differences in the asymptotic critical be- Xc= .
havior between the two ensembles. Because ofgpatially) NpT
uncorrelated nature of the disorder in the grand canonic
ensemble it is favored for its relative simplicity by theoreti-
cal studieqsee[20] for referencesand by numerical studies
[33—37 aiming to test them. On the other hand, in studying
by Monte Carloaveragethermodynamic observables, errors
can be reduced by using canonical disorder, as was done
[32]. We note that if one wishes to study by Monte Carlo : ; . .
simulation thefluctuationsin the thermodynamic observ- for p=0.8 were actually obtained with canonical disorder
ables due to disorder, the use of grand canonical disorder §0'8'
advantageous.

In the Monte Carlo simulations we used the WdI80]
single cluster algorithnp29] for the Ising model because of In attempting to estimate the exponent ratitw directly
its efficiency[38]. Skewed periodic boundary conditiof]  from the finite size scaling of the specific h&athrough Eq.

(22)

(23

a+he magnetization density and susceptibilityy, were fit-
ted to the finite size scaling form46).

The estimates that were obtained for the critical exponents
ratios B/v andy/v from the fits in Figs. 4 and 5 are listed in
}lr',f';\ble Il together with the estimates of Heli@2]. Note that
exponent ratios and critical temperatures quoted f{G2]

2. dm/dt and estimation ofa/v
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104 TABLE V. Estimates for critical exponent ratios from finite
rorrrThn roT TS size scaling af; . Estimates due to Heug82] are listed for com-
+ p=0.8 : parison. The estimate far/ v is based on the relatiom/ v=2(¢/ v
1000 “ p:OB _§ +,8/v)*d.
9 0c=0.6 ] (Zlv) v (Heued (alv) alv (Heue)
100 s _E c=0.6 0.9486) 0.942) —0.22828) —0.226)
& . p=0.6  0.9583) —0.21030)
10 - p=0.8 0.9624) 0.972) —0.0669) —0.046)
¥ E
1 ol N one finds thal™ diverges ag ¢, where
1 10 100
— d_
A [~ Yi (Yt Yn) _1-p (26)

FIG. 5. The susceptibility. as defined in Eq(23) at T; as a

function of loggl. The solid lines are fits to the forgi6), yielding Thus we fitl to the finite size scaling form
estimates fory/ v that are listed in Table Il

['=Cyl%". (27)
(15), we encountered two difficulties. First, we found that the
estimates of the specific heat of each samplevere very
sensitive to the length of the simulations. Shorter simulation
biased the specific heat to lower values, e.g.,[der0.6, |
=40, the value measured f@ using an average simulation . X :
length of n/(27c+1)~120 was two standard deviations lized in Table IV to give estimates faw/v that are much

smaller than the one measured with a four times longer simy1ore accurate than those obtained from analysis of the spe-

lation. The systematic underestimation of the response funf,c-IfIC heat results.

tions due to run lengths that are too short was studi¢@9h .

Second, the accuracy in estimatingdv from the specific IV. LACK OF SELF-AVERAGING AT = T¢

heat behavior is rather poor. This is due to the fact thlat In order to obtain the variancéy and the relative vari-

is a small negative number so that the singular behavi@r of 5nceR, the same procedure and considerations as described
is difficult to disentangle from other analytic contributions i, sec. |1 C were used.

[40]. o ) ) ) In Fig. 6 we plot the relative variance of the magnetiza-
In order to overcome the difficulty in estimating the ex- tjon R “as a function of lattice size on a double-logarithmic
ponent ratioa/ v we followed Heue{40] and measured the gcqje. Several interesting features are suggested by this fig-

derivative of the magnetization with respect to the reduceq, First, note that fop=0.6, R,, is decreasing as in-
temperaturé=(T—Tc)/T,. Itis equal to the magnetization- reases for the smaller lattice sizes, possibly leveling off for
energy correlation largel. R, of the p=0.8 model first decreases slightly and
then seems to tend to a constant. Since it seems plausible that
am &*f -1 Rm(p=0.6)=R,,(p=0.8) for any lattice size, these trends
T T T HA W[((|M|—<|M|>)(H—<H>)>]' seem to imply that for the two grand canonical models
(24) tends to the same constant. Assuming that this constant is
bound from above by thp=0.6 model and from below by
I1he p=0.8 model we estimate it d&8,=0.0552). The im-
plication of this scenario is tha&,, of the weakly dilutedp
=0.8 model reaches the univerdd), value of the dilute
Ising fixed point at smaller system sizes than the highly di-

The resulting estimates faf/v are given in Table IV.
éssuming the hyperscaling relatian v=2/v—d and using
g. (26) the scaling relatiom/v=2({/v+ B/v)—d is ob-
tained. Using this relation, the results for andI" are uti-

wheref is the free energy density. From the scaling behavio
of the free energy

—p-d
f(t,h)=b=f(b%t,b™h) (29 |uted p=0.6 model. The fluctuations im, in the highly
TABLE lll. Estimates for order parameter critical exponent ra- — T
tios from finite size scaling af; . Estimates due to Heug82] are 0.2 = p=0.8
listed for comparison. Note that throughout the paper the errors x p=0.6
given for our results are only statistical while Heuer’s error esti- e O 0 =06 X x E
mates include the systematic errors that could arise from errors in & 0.05 [ L S
determiningTy . i 1
0.02 | o © ©°9
Blv Blv (Heue) vlv vylv (Heue)
0.01 ol
c=0.6 0.43813 0.452) 2.11021) 2.093) 1 1l0 100
p=0.6 0.43712) 2.10420)
p=0.8 0.50%2) 0.51(2) 1.9904) 1.9903) FIG. 6. The relative variance of the magnetizatiypat T, as a

function of logygl .
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TABLE V. Different parameters related to the average pseudocritical inverse tempeéfaifb and its
varianceVKmax. Second column: estimate of the shift exponeraccording to Eq(30), whereK. is taken
from Heuer{32]. Third and fourth columns: same as first column but viithbeing a free parameter. Fifth
column: estimate of, based on the finite size scalingwfandI’. Sixth column: same as fifth according to
[32]. Last column: exponent ofy .

N (K, fixed) N K¢ yi={lv+Blv y; (Heue) pxl2
c=0.6 0.9919) 0.412 5413) 1.38614) 1.394) 1.414)
p=0.6 1.3@10) 0.412515) 1.39512) 1.4219)
p=0.8 1.44634) 1.3462) 0.285 760 ¥4) 1.4675) 1.474) 1.442)

diluted p=0.6 model are larger than those of the dilute Isingtwo types of models do flow to the same fixed point and that
fixed point model. This finding is in line with Monte Carlo the difference inR,, will disappear for very largé.
results/32] and RG calculationg20], according to which the The relative variance of the susceptibilﬁlg(C is plotted in

critical exponents of the dilute Ising fixed point are closer, inFig. 7. R, exhibits the same qualitative behavior as that of
the lattice size range 20/<60, to the observed effective Rm- Ry, of the grand canonical disorder models tends to

critical exponents of thgp=0.8 model than to those of the _ ) _
p=0.6 model. R,.=0.15q4), while R, of thec=0.6 model seems to tend

A second feature is the striking difference between thgo R, (1=90)=0.061(2). Aharony and Harri$13,42 found
two types of disorder, with the canonically disordered that to leading order ir=4—d, Ry /R,=1/4. We find that
= 0.6 model exhibiting a much smaller relative variance tharfor p=0.8 Ry/R,=0.35(2) and for c=0.6 Ry/R,
that of the two grand canonical disorder models. WiRlg ~ =0.371). Possibly terms of higher order inwould recon-
of thec=0.6 model is initially increasing with system size it cile this discrepancy. It cannot be attributed to the definition
appears to level off to a constant value Bf,(1=90) of x.. If one defines the susceptibility as in E@8) then at
=0.02278). Though it is possible tha, could increase at T one finds thatR, becomes smaller by a factor of 7
larger lattice sizes it seems unlikely since the system sizes 10. In this case the ratid}y /R, would become even
are already quite large. An indicator to the similarity of the jarger. We did not use this definition for the susceptibility at
two types of modelp=0.6 andc=0.6 is the relative square 1= pacause of its large single sample erréyg (see also
root mean of the fluctuations in the number of magnetic site§8°])_
N=3{L,K; in the p=0.6 systems\[(N~[N])?J/[[N]?

— H _ H 1

=V(1—p)/Np, which for| =80 is as small as- rog. V. SCALING OF PSEUDOCRITICAL TEMPERATURES
If indeed R, of the c=0.6 model tends to a different

constant than that of the models with grand canonical disor- A. Calculating T.(i,I) with the histogram

der, then according to Aharony and Harris’ very general RG reweighting method

argumen_tils] the two types of models doot belong to ”?? One of the main purposes of this work was to study the
same umversa_llty class. We are not aware of any add'F'f)m’dﬁstribution of pseudocritical temperaturég(i,l) of the en-
evidence to this effect otherwise. For example, our critical

) ; dp— ol semble of site-dilute Ising models. The main aim was to
exponent estimates for thee=0.6 andp=0.6 are compatible 4y directly the scaling a§T,(I) with | and test which one
with each other, and our exponents for five 0.8 model are

; ) - of Egs.(5) or (8) is correct in the case of a system governed
compatible with those of HeugB2] for ac=0.8 model. The 5 gisordered fixed point. The inverse pseudocritical tem-
critical temperatures for both types of models seem also t

) o BeratureKc(i 1)=1T.(i,l) of theith sample was defined as
agree(see Table V and Ref$32,35). This question is cur-  yhe inverse temperature of the maximum of the susceptibility

rently under investigation. The resulié1] suggest that the ¢ sampleK (i,1)=K .(i,1). Here the definition of the
susceptibility was

P08 _(MH-(MD)*

Xi
O NpT

0.2 (28

o:>é’ oc=0.6 In order to findK,,(i,l) the following iteration proce-
0.1 E dure was followed for each sample. A first simulation was
] performed at the infinite lattice critical temperatues esti-
e © 909 mated in[32]) K, =K{ (the indexi is omitted from here on
i In addition to calculating the observables y,I", a histo-
L L gram of the energy and magnetization was generated. Using
the single histogram reweighting technid@d —29 (for pre-
1 20 100 vious studies of disordered systems utilizing the histogram
reweighting technique s486,43), this histogram can serve
FIG. 7. The relative variance of the susceptibiRy atT; asa to calculate observables at temperatures clogé, taBy cal-
function of log . culating y at different temperatures a first estimate for the

0.05 ®
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susceptibility maximuny ., and the temperature at which it Some of the larger systems, for a subset of the samples, the
1 . . .
occursK? . was obtained. A second simulation was thenSimulation with five times as many Monte Carlo steps was

performed at a temperature somewhat above this estimaftPt performed, so that error estimateskgfs, and xmay were

K,= Klmax_ K. Previous studies of the histogram reweight- not obtained. This was done in order to save computer time.

ing technique have shown that the errors of observabis at [0 these samples the average squared errdK f and

VT . XmaxWas approximated as being six times larger than that of
5X(T).’ are smallef25,23 when the tgmperatgre at which the complementary subset of samples where the error was
the histogram was generatéd,;,, is slightly higher, Tqy,

~T. For thi hodé. 10 b I " calculated(from an altogether six times longer Monte Carlo
- FOr this réason we Choseqyy 1o be a small positive sequence For thep=0.61=80 system the estimated aver-
number(see more details below

. o _ %ge squared error was extrapolated from the smaller systems.
Using the energy and magnetization histogram generate

atK, a new estimate for the temperature of the susceptibility

maximum,K2_,, was obtained. If the difference between the B. Scaling oftc(l)

two estimates was smaller than a predetermined resolution  In the finite size scaling theory ¢8] it was assumed that
|K2_— K2 _]<r, the iteration process was stopped. Otherthe average pseudocritical  temperatureK (1)
wise the iteration process continued, wherelfy= KiL =[Knadi,)] scaled as
— Ko, until the condition _
Kma{ 1) —Ke=Akl N (30
|K£nax_ Klm_a}(| <r (29

and that the shift exponeé4] A=y,=1/v. First we as-
was met. This iteration process was intended to overcomsumed the correctness of the critical temperature valijes
the problem of systematic errof&3] that occur when the quoted in Table Il, so that the critical inverse temperature of
simulation temperature is too far from the trig,,<. The the infinite sample is assumed to be&.=1/T;
condition (29) is supposed to ensure that the last two esti-=0.285 781(40) forp=0.8, andK.=0.412 88(10) forc
mates forK,, do not suffer from a systematic errarwas  =0.6 andp=0.6. Fitting K1) to (30) with K fixed we
chosen equal to the approximately expected statistical errgound for the p=0.8 model values of =1.446(34) and
of K!,... If the iteration process did not terminate before orA,=0.040(5) from lattice sizes ¥6l<64. For thec=0.6
with the third estimat& 3 ., then the Monte Carlo simulation and p=0.6 models the results were incompatible with the
length atK, was doubled and the process was continued. Ifixed value ofK.=0.412 88. In fact in these modets,,,(!)
was again doubled if it reached the seventh iteration andhonotonically decreases witrand for the largest lattices we
again doubled if it reached the tenth iteration. Nonconverhave K,,{(80p=0.6)—K.= —0.000 26(3) andK,{60c
gence of the process after twelve iterations was very rare. 1= 0.6)—K.=—0.000 077(35). Thus we also fitte€,,(1)
those samples the iteration procedure was restarted manuatty Eq. (30) with K. being a free parameter. The values\of
with K, =K{ but with a larger initial Monte Carlo simulation andK. which were found, using lattice sizes<0<60 for
length. The need to increase the simulation length for some=0.6 andp=0.6, and 8I=<64 for p=0.8, are given in
samples occurred because for different samples there wetke third and fourth columns of Table V. Fa=0.8 our
different autocorrelation time&f the Monte Carlo dynam- estimateK,=0.285 7609(4) is within errors of the estimate
ics) and different average cluster sizes, while the simulatiorof Heuer[32] (with canonical disorderand of Wanget al.

length was specified by theumberof Wolff cluster flips. [35] (with grand canonical disorder For c=0.6 andp
In order to estimate the statistical error and reduce it, 0.6 our estimates K.=0.41254(13) and K.
simulation with five times as many Monte Carlo sté¢psm-  =0.412 51(5) are within errors of each other but not within

pared to the simulation length of the last iterajiovas per-  errors of the assumed valle,=0.412 88(10). A more ac-
formed again at the last simulation temperatite. The  curate estimate df., which does not require knowledge of
Monte Carlo sequence was broken into five, using each seg, is obtained in Sec. V C 1. In the fifth column of Table V
ment to create a separate histogram and calculate a separatgimates of/; based on estimates @ v, /v and the scal-
estimate ofK . and xymax. Together with the last estimates ing relation (26) are given. The values of, obtained by

of Kinax @and xnmax Of the iteration procedure, all together six Heuer in the same way are given in the sixth column of
estimates oK, and . Were averaged to give final esti- Table V and are compatible with our estimates. Our esti-
mates ofK . and ymaxj - The variance of these six esti- mates ofy, and\ agree forp=0.8 (whereK was fixed and
mates was used to estimate the error for the two quantitiesor p=0.6 (whereK, was a free parameterFor c=0.6 no

0K naxj » and Sxmax; - agreement was found. One possible reason could be that the
The parameteK s was adjusted for the small system system size used to estimatewas too small and that cor-
sizes, through trial runs, so as to minimize the errorg, g, rections to scaling need to be taken into account. As is well

while its value for the larger systems was extrapolated fromknown, finding the critical temperature and the shift expo-
the smaller ones. Far=p=0.6 we seK;~0.21"1% and  nent simultaneously is a difficult task. In any case, our esti-
for p=0.8 Ko=~0.12 1% The optimal value oK. was  mates fory, are much more accurate than the estimates for
found not to depend strongly on the simulation length. The\x. It seems to us that trying to extract the shift exponent and
resolutionr was adjusted so as to be approximately equal tahe critical temperature by finding the pseudocritical tem-
the ensemble average statistical errokdf,,. Note that the perature of many samples and using their avekagg(l) in

parameterK ,; andr were set once for each model and eachEq. (30) is not an efficient method. This is because a long
lattice size and were not varied for different samples. InMC simulation is needed to avoid systematic errors in esti-
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FIG. 8. The variance of the inverse pseudocritical temperatures (K d) - K) I
Vi, @S @ function ofl on a log-log scale. The lines are linear max
fits yielding exponentpy listed in the last column of Table V. FIG. 9. Frequency distributions of the scaled pseudocritical in-

verse temperatured K .(i,L)—Kclt for p=0.8, with K,
mating K,a{i,). Thus it is difficult to obtain a sufficient =0.285781 ang,=1.467. Thin dotted line for= 16, thick dashed
number of samples for an accurate enough estimate dihe for|=32 and thin solid line fot =64. The number of samples
Kmadl). The error inK,5{l) must be small compared to used was 32 000 fdr=16 4000 forl =32 and 1479 fof=64.

Kmaxd!) — K¢ . This difficulty is not as significant for the es-
timate of the varianc® . K. (1) —K,| for any system size. The result is that a mea-
max

surement ofX at the critical temperatur€; is done in some
samples above their pseudocritical temperailyé,l) and
in some samples beloW(i,l).

The variance of the pseudocritical temperatures distribu-
tion V¢ was calculated taking into account the errors
[(5Kmax,)2] This is done in a manner completely analogous ~ Our estimates of/c _ allow us to estimatd@ by another
to the discussion d¥/y in Sec. Il C.Vi __ is plotted in Fig. 8 method(we thank D. Stauffer for bringing this to our atten-

on a double logarithmic scale. The solid lines are fits to théion). Since asymptoticallyK yal)—Ko~I "% and NAZS.

C. Variance of pseudocritical temperaturesVy

1. Estimating T¢ through Vi

form VK™ Al P and the resulting estimates p§/2 are  ~1™*, one expects that
listed in the last column of Table V. As one would expect,
A\ is smaller forc= 0.6 than forp=0.6, and is the small- Kmal 1) =K+ Bv\/VKmx(I ), (3D

est forp 0.8. We see that for all three models the results for
pk exclude the possibility5) that px=d=3. On the other
hand pk/2 is within errors ofy, for p=c=0.6, and within
errors of\ (with K., fixed) for p=0.8, as predicted by Aha-
rony and Harrig8). Note that the values obtained fpg for
p=0.8 with lattices 8<1=<32 andp=0.6 with 20<1<60 are
pk=2.95(6) andpx=3.004). This behavior oy __ could
be a manifestation of a crossover from pbgto dilute (8) :
critical behavior. On the other hand for the model with the 04136
canonical disorder the crossover is in the opposite direction 04132 |
since forc=0.6 with 10<1=<40, px=2.777).
The results forvyc _ support the picture implied by AH ¢
RG calculations, namely, that both the width of the pseud- g:g;gg L
ocritical temperatures/VKmax(l) and the distance of its av-
erage from the critical inverse coupling .{|)— K| scale
as ~|7Yt. This is best visualized in Fig. 9 where the fre- 0.2860
guency of the scaled pseudocritical inverse temperatures

whereK . andB, need to be determined. Note that by fitting
the data accordlng to EQ31) (this method was used in per-
colation studie$45]) it is not necessary to determing and

only two fitting parameters are used. Therefore the estimates

0.4144 L
0.4140 [

04128 |

&
£
X 02870 -

[Ko(i,]) —Kc]It is plotted for p=0.8 and|=16,32,64 02850 )
with K.=0.285 781 andy,=1.467. It is evident that the 0.2840 —_—
three dlstr|but|ons match well. Their averages are 0000 (\(}'005)1/2 0.010
{[Kmadi,1)—Kc]1¥}=0.04711),0.0451(28),0.04), and Kmax

their widths are Vi _1"t=0.172(15),0.174(28),0.17(4) FIG. 10. The average pseudocritical temperak(g, as a func-
for 1=16,32,64 respectlvely Note that the average ratio ofion of the square root ¥ _ together with linear fits made ac-
the width to the average is3.8. Thus, as is evident from cording to Eq.(31). Fits are "made using the three largest system
Fig. 9, the fluctuations ik .(i,l) are significantly larger than sizes for each model. The fitting parameters are listed in the text.
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FIG. 12. The relative variance of the maximum susceptibility

FIG. 11. The ensemble average of the maximum susceptibilit ;
 asa function of log .

[ xmax] @s a function of log). The solid lines are fits to the form ~ Xma
(16), yielding estimates of y/v=2.034(2) for c=0.6, y/v
=2.027(2) forp=0.6, andy/v=1.987(3) forp=0.8.
=0.61=80 this estimate was actually extrapolated from the
smaller systems estimatésee Sec. VA Thus these two
of K. obtained in this way are probably more reliable thandata points should be taken with more than a grain of salt. It
those given in Table V. In Fig. 10 we plét,cas a function  js most interesting to compare Fig. 12 to Fig. 7 where the
OF VK, t0gether with linear fits made according to Eq. relative variance of the susceptibility & , R, , is plotted.

(31). We findK,=0.285 7792), B,=0.257(3) forp=0.8,  For p=0.8 the behavior oR, andR, is qualitatively

EC():401£2116217£‘)(4I)3 =?)U2:3(()).(2125()3120rcf2ro g =0.6, and K, rather similar.RXmax initially decreases a$ increases and
' e o tends for larger | to a constant, where

RXmaX(I:64)=0.00216(16). However, in contrast with Fig.

7, this constant is roughly 72 times smaller than the ldrge
1. Scaling of[ xmax] value ofR, . This is quite a striking difference. It means that

Another way to study the finite size scaling of the suscepin order to obtain the same relative accuracy jn] as in
tibility is to study the ensemble average of the maximum[ xmax approximately 70 times as many samples are needed.
susceptibility[ xmax], Which is expected to scale with lattice The source of this difference is apparently simple. The sus-
size as in Eq(16) with a scaling exponeny/v. In Fig. 11  ceptibility of each sample is some functi@nof the tempera-

[ Xmax iS plotted as a function df on a double logarithmic ture with a sharply peaked maximum{(i,l). In factG is
scale. The straight lines are linear fits to the fai). For  approximately only a function of the differende-T.(i.l),
p=0.8 we findy/v=1.9873), which is in agreement with G{T—T,(i,l)}. Thus, the value of the maximum susceptibil-
the estimate obtained using the susceptibility at TS, ity is nearly sample independenty,a~G(0). On the other
ylv=1.9904). As can beseen in Fig. 11 the values of hand, when one measurgsat T, , in different samples one

[ Xmad for p=0.6 andc=0.6 are indistinguishabléhey are is samplingG at different values of its argument. This results
indeed within errors This is in contrast with the data &  in large fluctuations iry at T .

of Fig. 5 wherey,, of the two models seem to diverge with a  Our findings suggest that the standard procedure of in-
similar exponent but with a different amplitude. We havevesting much computation time in finding thesc limit of

also calculategy at T; and found the same trend, namely, the critical temperaturd]; , and then averaging quantities at
that y(p=0.6)> x(c=0.6), so that this feature is not an this temperature over many samples, is not optimal. A better
artifact of the different definitions, Eq&23) and(28), for y. ~ procedure may be to locate through the single or multiple
For p=0.6 andc=0.6 we foundy/v=2.027(2) andy/v histogram method the pseudocritical temperature of each
=2.0342), respectively. These values are significantlysample, and measure quantities at that temperature. In this
lower than the values found using the susceptibijjtyat way sample to sample fluctuations are reduced substantially

D. Maximum of the susceptibility xmax

TZ, ylv=2.104(20) andy/v=2.110(21). They are also and better accuracy is achieved.
closer to results of RG calculations v=1.97[20,19. For p=0.6 R, ~ monotonically decreases with lattice
size, possibly leveling off to a constant for larbeln con-
2. Lack of self averaging of the relative variance,R trast with Ry. this constant is different from that of the

In Fig. 12 we plot the relative variance of the maximal = 0.8 model. Lastly, foc=0.6, in contrast witlR, , we find

susceptibilityRXmalx as a function of lattice size on a double- that Ry o is within errors OfRXmax of the p=0.6 model. In
logarithmic scale. Fop=0.8, |=64 andp=0.6, =80 we  addition,R,  initially decreases akincreases, opposite to
have[(éxmax,-)z]NXmax~%,0.15, respectivelysee Sec. Il & the behavior oR, . More explanations to the differences in

Thus the estimate o¥, _ is dominated by the estimate of the behavior oR, _andR,_are given at the end of the next
the average squared single sample erfé&m.,;)°]. Forp  subsection.
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FIG. 13. Scatter plot, where for each sampléhe horizontal
axis represents the scaled absolute inverse temperatamd,
—K(i,1)[I’t and the vertical axis is the scaled magnetizai@n
=ml#’”. Points withK.>K(i,l) constitute the highem (lower
temperaturg branch, whereas points with.<K.(i,l) constitute
the lowerm (higher temperatujebranch. For the sake of clarity,
only 100 points are shown for each system size and each branch,
and several points withK,—K(i,1)|1Yt<0.001 were omitted.

FIG. 14. The function).(Z), as defined in(34), obtained
from best fits to the scaled magnetization versus temperature scatter
plots for 1=16,32,64. Upper curves according t@_ [K.
>K(i,1)] and lower curves according . [K.<K(i,1)]. The
fitting parameters are given in Table VI.

mi(K, D) =1"A"Q. ({K—K(i,))}[1%). (33

E. Dependence ofm(TZ) on T(i,l) Here Q. (Z) is the scaling function folkK <K(i,I) and

After examining the behavior of the distribution Xfi,1) ~ Q-(Z) for K>Kc(i,l). For largel, and thus larg&, the
at T and the distribution off(i,l) it is imperative to ex- infinite sample critical behaviomn;~{K—Kc(i,)}#, must
amine the correlation between the two distributions. A good?® @symptotically reproducgd6] for K>Kc(i,1). Thus, for
starting point is the finite size scaling anséty, accordingto  largeZ, Q_(Z)~Z”. For K<K(i,l) the shape ofQ,(2)
which X;(T¢) mainly depends ofiT; —T.(i,I)}/T{ . Figure  must reproduce, for largg, the 1A/N decay of the magne-
13 is a scatter plot where for each samplthe horizontal tization to zero asl—o. Thus, for largeZ, Q. (2)
axis represents the scaled absolute inverse tempertyre ~ZzA-9% Fork=K(i,l), i.e.,Z=0, the finite size scaling
—K(i,1)[I¥tand the vertical axis is the scaled magnetizationbehavior[m;]~I~#'* must be asymptotically reproduced,
m;l#*. This representation is equivalent to the usual dat%plying 0. (2)—const aZ—0. (An example of this type

collapse representation, which is used to demonstrate finitgs finite size scaling is the scaling we found o . A
size scaling. The difference is that here the reference critical. ma

temperature i (i,l) instead ofK., and the measurement simple possible form foQ .. (Z) fulfilling these requirements
temperature is alwayK, instead of different values df.
Points withK.>K(i,l) constitute the highem (lower tem-
peraturg branch, whereas points wit.<K.(i,l) constitute
the lowerm (higher temperatupebranch. In Fig. 13 we plot
data forp=0.8 andl=16,64. For the sake of clarity, only wherep_=p andp,=pB—-d/2y, andA. ,B. ,p. are free
100 points are shown for each system size and each brangharameters, so that the data of Fig. 13 should be described by
and several points withk,—K(i,l)[1¥1<0.001 were omit- Eqs.(33) and (34) with K=K.. Thus, for each lattice size
ted. 1=16,32,64 and both brancheX.<K.(i,|) and K,
Figure 13 indicates that to a good approximation the>K (i,l), the scaled K mai.1),m (Ko} pairs(a partial set of
scaled magnetization of the sample Tt is a function of  which is plotted in Fig. 1B were fitted to the form(34).
only the scaled reduced temperature of the sample. Thus orfthe values of p_=8=0.34295 and p,.=8—d/2y,
may attempt to substitutet) by a sample independent form = —0.675 65 that were used rely on the finite size scaling
for Q;(Z) so that results afT; (Tables Ill and V. The six fitting functions that
were obtained are plotted in Fig. 14 and their fitting param-
eters are given in Table VI. The agreement between the three
curves for both branches, as seen in Fig. 14, is surprisingly
good. The goodness of the fits is also extremely high. This
Note that this is only a goodpproximation if Eq. (32) were  syggests that Eq32), equations similar to E¢34), and the
exact, it would mean tha&, _=0. Thus in order to describe possibly invariant(as suggested by Fig.) @listributions of
the magnetization data Ki. we write (the change from tem- K(i,I) provide an excellent description of the scaling be-
perature to inverse temperature is only for convenignce  havior of disordered systems.

Q. (2)=A.ZP+(1+B,Z Px)r= /P (34)

Xi(T,1)=1PQ(t;1%). (32
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TABLE VI. Parameters of the fitting functior®_. (), defined in Eq(34), obtained by fitting the data
sets of scaledK(i,l),m(K.)} pairs for each lattice sizé=16,32,64 separatelywith p=0.8). The
number of samples used was 32 000, 4000, and 147T7=fd6, 32, and 64, respectively. The six fitting
functions are plotted in Fig. 14. The crossover lengths, which control the crossover to th& laegavior,
are defined ag%°s=p+ .

+

A B_ p- Z0%8 Al B. P, Z50ss

=16  2.3874) 0.051813) 1.451) 0.130 0.4696l2) 0.176518) 1.2995)  0.263
=32  2.3809) 0.0483) 1.493) 0.130 0.462®@2 0.168734) 13169 0.259
=64 229123  0.071)  1.336) 0.142 0.45245 0.15211) 1.36835 0.252

In Fig. 15 we show the same data as in Fig. 13 but forof the two models is found. For the low temperature branch
p=0.6 andc= 0.6 with system sizé=40. [Ke>K(i,1), higher curvé good agreement is found be-

The purpose of this analysis is to demonstrate that thgyeen the function€) . (Z) for smallerz, while for largeZ

magnetization of the two models is governed by the sam . . .
temperature dependence, and that the main difference is %‘(Z) is larger for the grand canonical disorder<0.6).

the distributions ofK.(i,1). For this reason the data were The fitting functionsQ..(Z) for the data forl =60 did not
scaled with the same exponents, taken as the average of tAgree with those of=40. Possibly this is so because the
exponents of the two modelsp/v=0.4375 andy, e€xponents used are not the asymptotic di3s20.

=1.3905. In fact our estimates fg and 8/v for the two It is also of interest to contrast the dependencg f, on
models are within errors. For the sake of clarity, only 100Kmax; With the dependence of.(K;) on K. This is a
points for each model and each branch are shown. As wagy to understanding the reasons for the differences between
seen with thep=0.8 data, it is evident that to a good ap- the characteristics d’RXC (Fig. 7) and the characteristics of
proximation in both models the magnetization kgt is a Ryoa (Fig. 12. In Fig. 17 we show a scatter plot oK {,.x

functpn of only .the. reduced inverse temperatuikg, - —Kes XmadXmad) @nd (K max—Kexe(K/x(K)]) for p=0.6
—K(i,l). The main difference between the two models isang system sizé=60 from 950 samples. It is evident that
also clear; forp=0.6 there are more points with Igrghléc while x.(K.) shows a strong dependence Kf.,—Ke, Xmax
—Kc(i,1)], while forc=0.6 there are more points with small gho\s [ittle dependence dfy,.,—K. . This qualitative differ-
|Kc—Kq(i,1)]. Thus larger fluctuations fqy=0.6 inKc(i,I)  ence persists for all models and all system sizes. This ex-
(see also Fig. )7 together with the large dependence of pains why, for any given model, fluctuations .y give
mi(Kc) on Ke—K(i,1) give rise to the result thaRn(p  rise to fluctuations iny.(K.), which are much larger than the
=0.6)>Rp(c=0.6). B fluctuations iny max. The result is thaR, <R, , as we have
. .. . . max C
In Fig. 16 we plot the fitting function®..(Z), obtained  noteq previously.

by best fits to the scaled magnetization versus temperature Figure 17 is also the key to understanding wRy (p
[

scatter plots fop=0.6 andc=0.6 with | =40 (the full data .
sets coreesponging to Fig. 5 ( =0.6)>R, (c=0.6) whileR, _(p=0.6)~R, (c=0.6).In
For the high temperature branchkKJ<K(i,!), lower the first case, since fluctuations ik are larger for

- = p= 0.6 than forc=0.6 (see Fig. 8 the strong dependence of
curve] good agreement between the fitting functids(Z2) Yo(Ko) on KoK, gives rise to RXC(IO=0.6)> Rxc(c

ml% 1 . m I(BN) 1
:‘ J
0,001 02)1 — ""0"1 — i 0.001 0.010 0.100 1.000
' K. - Ko Dl K, - KDl
FIG. 15. Same data as in Fig. 13 but for 0.6 andc=0.6 with FIG. 16. The function®)..(Z), as defined in Eq(34), obtained

system sizd =40. The data were scaled with exponents taken agrom best fits to the scaled magnetization versus temperature scatter
the average of the exponents of the two modgls;=0.4375 and  plots forc=0.6 (dotted ling andp=0.6, withl =40. Upper curves
y;=1.3905. For the sake of clarity, only 100 points for each modelaccording t0Q) _ [Kc>K(i,I)] and lower curves according 0.

and each branch are shown. [Kc<Kc(i,l)]. Fits made usingd/v=0.4375 andy,= 1.3905.
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3.0 — When the system is governed by a disordered fixed point
o/ =0. When the system is governed by a pure fixed paint
o X/ 1 =(alv),. Thus the two possible behaviors foE<I are

T (11¢)~¢ for a random fixed point

Ru(&.D)~ (11~ 9% for a pure fixed point .

(37)
1.0 - In an experiment, since generating many samples is imprac-
tical, one studies a single large sample with a particular re-
alization of the quenched disorder of sikeFor any¢ the
0.0 R T T SR S value of X measured in the sample is a sampling from a
-0.006 -0.004 -0.002 0.000 0.002 0.004 probability distribution with relative variand@y(¢,1). Thus
K. K Rx(&,1) controls the deviation oX from the many samples
max e average. If the system is governed by a random fixed point,
FIG. 17. A scatter plot of(Kn.—Ke.x<(KJ/[x«(KJ]) and as the correlation length is increaseRy increases as

(K man—Ke Xmax LXmeod), contrasting the dependence gf(K.) and  ~(1/€) 9. X behaves like the average df §)9 independent
Xmax ON Kmad(i,1). Data forp=0.6 and system sizZe=60 from 950 measurements on regions of sig& The variance of these
samples. measurements does not decrease ascreases; it is con-

stant. On the other hand if the disorder is irrelevant and the
=0.6). In the second case, despite the fact that fluctuationsystem is governed by a pure fixed point witk<0, as the
in Kax are larger forp=0.6 than forc=0.6, the weak de- correlation length is increaseBy increases more mildly as

pendence Ofymax ON Kna—Ke results in Rxmax(p=0.6) ~(11&)79¢7_ In this case tooX behaves like the average
~R, (c=0.6). of (/&) measurements on regions of siZe However, as
mex increases, the variance of these measurements decreases as
— é—alv.
VI. SUMMARY AND DISCUSSION We have verified that for a disordered system governed

By and large it seems that our MC results confirm the AHPY & random fixed pglr{tg?(l)]zldo_es not scale as'| ‘
scenario. In an Ashkin-Teller model, governed by a purePut rather ag sT¢(l)]°~1~“". This is an important result,
fixed point, we found thaRy,~1%'” in agreement with Egs. similar to the situation in thg pyrely geometric pe_rgolgtlon
(6) and (7). In site-dilute Ising models on a cubic lattice, Problem [45]. Recently Pamandi, Scalettar, and Zinmyi
governed by a random fixed point, we found a lack of self-[12] claimed that the bound=2/d, which was supposed to
averaging for both canonical and grand canonical disordef}o!d for disordered systenj&0], is not valid. As they show,
One of the aims of our work was to resolve whether at ranif In systems violating this bound one would have
dom fixed points our assumptids), which led to the pre- L6Tc(1)1>~17¢ [our Eq.(5)], then simulations aT; would
diction (6) for the critical widthRy, is correct. The alterna- Not be able to capture the true critical expongi@. In fact
tive Ry—const result of AH implies that Eq(8) should N [12] Eq.(S) is terr_ned “the most Ilkely.scenarlo” and the
replace Eq(5). Our results indicate that the AH result is the conclusion drawn is that “self-averaging breaks down.”
correct one. Note though that the absolute value of the expddowever, studies of percolatidd5], our results, and those
nent ratioa/ v of the dilute Ising fixed point, either as calcu- Of AH [13] imply the contrary.[ 5T¢(1)]°~172" [our Eq.
lated by RG,a/vr=0.003, or as indicated by the=0.8 re-  (8)], and therefore simulations af are able to capture the
sultsa/v=—0.0558), is very small. Thus one could argue true critical exponents even i#<2/d. This also becomes
that our results foR, andR, do not disprove Eq(6). The evident by examining the finite size scaling theony @f for

scaling of Vi is, however, in agreement with E) and L Xi(T¢)], assuming that Eq(5) holds versus the conse-
max
not with Eq.(5). This therefore rules out Eq6) since it is quences of EQ(8). . y w .
based on Eq(5). We have shown tha’F fluctgatlons)o? ath are predomi-
We find it appropriate to repeat here the results of Ahaantly due to fluctuations ibT;=T¢ —Tc(i,l), and that
rony and Harrig13], which we have now validated, with an these fluctuations can be dramatically reduced by measuring

emphasis on the implication to experiments. In finite sizei & Tc(i,1). This suggests that using the histogram method

scaling form the relative variance can be written as to obtainX;(T(i,l)) for each sample might be a better strat-
egy for Monte Carlo studies than the current strategy of
Ry(&,1)=1°Q(/£). (35) studyingX;(T;). It was also shown that to a good approxi-

mation, fluctuations ofX; close to criticality can be ac-
For a fixedé= & andI>¢, and thus |argi, strong self- counted for by the finite size scaling form H@Z) We be-
averaging, Ry(&,.1)~179, must be asymptotically repro- lieve that a more extensive study of the finite size scaling of
duced. ThusQ(Z)~Zz 97 for large Z. At criticality the ~ sample to sample fluctuations is both feasible and desired.

correlation length diverges and One of the surprising results of this work is the difference
found between thgg=0.6 model with grand canonical dis-
lim Ry(&,1)=1°Q(0). (36)  order and thec=0.6 model with canonical disorder. Our

Eoo results indicate that fop=0.6 andc=0.6 Vi scales as
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